enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Austenite - Wikipedia

    en.wikipedia.org/wiki/Austenite

    Austenite, also known as gamma-phase iron (γ-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron with an alloying element. [1] In plain-carbon steel, austenite exists above the critical eutectoid temperature of 1000 K (727 °C); other alloys of steel have different eutectoid temperatures.

  3. Austenitic stainless steel - Wikipedia

    en.wikipedia.org/wiki/Austenitic_stainless_steel

    Its primary crystalline structure is austenite (face-centered cubic). Such steels are not hardenable by heat treatment and are essentially non-magnetic. [2] This structure is achieved by adding enough austenite-stabilizing elements such as nickel, manganese and nitrogen.

  4. Duplex stainless steel - Wikipedia

    en.wikipedia.org/wiki/Duplex_Stainless_Steel

    Microstructures of four kinds of duplex stainless steel in each direction. Duplex stainless steels are usually divided into three groups based on their pitting corrosion resistance, characterised by the pitting resistance equivalence number, PREN = %Cr + 3.3 %Mo + 16 %N.

  5. Allotropes of iron - Wikipedia

    en.wikipedia.org/wiki/Allotropes_of_iron

    Iron allotropes, showing the differences in structure. The alpha iron (α-Fe) is a body-centered cubic (BCC) and the gamma iron (γ-Fe) is a face-centered cubic (FCC). At atmospheric pressure, three allotropic forms of iron exist, depending on temperature: alpha iron (α-Fe, ferrite), gamma iron (γ-Fe, austenite), and delta iron (δ-Fe).

  6. Austempering - Wikipedia

    en.wikipedia.org/wiki/Austempering

    In steel it produces a bainite microstructure whereas in cast irons it produces a structure of acicular ferrite and high carbon, stabilized austenite known as ausferrite. It is primarily used to improve mechanical properties or reduce / eliminate distortion. Austempering is defined by both the process and the resultant microstructure.

  7. Austempered Ductile Iron - Wikipedia

    en.wikipedia.org/wiki/Austempered_Ductile_Iron

    Rather, the austempering process forms acicular ferrite and austenite. [2] The latter of these has a face-centered cubic (FCC) structure. The FCC has 12 slip systems that allow for dislocations motion, resulting in high ductility in the austenitic phase of ADI. This ductility also translates to relatively high toughness in ADI.

  8. Martensite - Wikipedia

    en.wikipedia.org/wiki/Martensite

    For a eutectoid steel (0.76% C), between 6 and 10% of austenite, called retained austenite, will remain. The percentage of retained austenite increases from insignificant for less than 0.6% C steel, to 13% retained austenite at 0.95% C and 30–47% retained austenite for a 1.4% carbon steel. A very rapid quench is essential to create martensite.

  9. Isothermal transformation diagram - Wikipedia

    en.wikipedia.org/wiki/Isothermal_transformation...

    Austenite is slightly undercooled when quenched below Eutectoid temperature. When given more time, stable microconstituents can form: ferrite and cementite. Coarse pearlite is produced when atoms diffuse rapidly after phases that form pearlite nucleate. This transformation is complete at the pearlite finish time (P f).