enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The elements 2 and 1 + √ −3 are two maximal common divisors (that is, any common divisor which is a multiple of 2 is associated to 2, the same holds for 1 + √ −3, but they are not associated, so there is no greatest common divisor of a and b.

  3. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The greatest common divisor g of a and b is the unique (positive) common divisor of a and b that is divisible by any other common divisor c. [6] The greatest common divisor can be visualized as follows. [7] Consider a rectangular area a by b, and any common divisor c that divides both a and b exactly.

  4. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.

  5. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    The second way to normalize the greatest common divisor in the case of polynomials with integer coefficients is to divide every output by the content of , to get a primitive greatest common divisor. If the input polynomials are coprime, this normalisation also provides a greatest common divisor equal to 1.

  6. GCD domain - Wikipedia

    en.wikipedia.org/wiki/GCD_domain

    In mathematics, a GCD domain (sometimes called just domain) is an integral domain R with the property that any two elements have a greatest common divisor (GCD); i.e., there is a unique minimal principal ideal containing the ideal generated by two given elements. Equivalently, any two elements of R have a least common multiple (LCM). [1]

  7. GCD matrix - Wikipedia

    en.wikipedia.org/wiki/GCD_matrix

    Then the matrix () having the greatest common divisor (,) as its entry is referred to as the GCD matrix on .The LCM matrix [] is defined analogously. [ 1 ] [ 2 ] The study of GCD type matrices originates from Smith (1875) who evaluated the determinant of certain GCD and LCM matrices.

  8. Coprime integers - Wikipedia

    en.wikipedia.org/wiki/Coprime_integers

    This is equivalent to their greatest common divisor (GCD) being 1. [2] One says also a is prime to b or a is coprime with b. The numbers 8 and 9 are coprime, despite the fact that neither—considered individually—is a prime number, since 1 is their only common divisor. On the other hand, 6 and 9 are not coprime, because they are both ...

  9. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    The greatest common divisor is not unique: if d is a GCD of p and q, then the polynomial f is another GCD if and only if there is an invertible element u of F such that = and =. In other words, the GCD is unique up to the multiplication by an invertible constant.