Ads
related to: remainder theorem word problemsgenerationgenius.com has been visited by 100K+ users in the past month
- K-8 Standards Alignment
Videos & lessons cover most
of the standards for every state
- Teachers Try it Free
Get 30 days access for free.
No credit card or commitment needed
- Grades 6-8 Math Lessons
Get instant access to hours of fun
standards-based 6-8 videos & more.
- Grades 3-5 Math lessons
Get instant access to hours of fun
standards-based 3-5 videos & more.
- K-8 Standards Alignment
Search results
Results from the WOW.Com Content Network
Chinese remainder theorem. Sunzi's original formulation: x ≡ 2 (mod 3) ≡ 3 (mod 5) ≡ 2 (mod 7) with the solution x = 23 + 105k, with k an integer. In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the ...
Polynomial remainder theorem. In algebra, the polynomial remainder theorem or little Bézout's theorem (named after Étienne Bézout) [1] is an application of Euclidean division of polynomials. It states that, for every number any polynomial is the sum of and the product by of a polynomial in of degree less than the degree of In particular, is ...
Hermite interpolation problems are those where not only the values of the polynomial p at the nodes are given, but also all derivatives up to a given order. This turns out to be equivalent to a system of simultaneous polynomial congruences, and may be solved by means of the Chinese remainder theorem for polynomials.
Word problem (mathematics) Decision problem pertaining to equivalence of expressions. In computational mathematics, a word problem is the problem of deciding whether two given expressions are equivalent with respect to a set of rewriting identities. A prototypical example is the word problem for groups, but there are many other instances as well.
The rings for which such a theorem exists are called Euclidean domains, but in this generality, uniqueness of the quotient and remainder is not guaranteed. [8] Polynomial division leads to a result known as the polynomial remainder theorem: If a polynomial f(x) is divided by x − k, the remainder is the constant r = f(k). [9] [10]
Number theory, particularly focusing on Diophantine equations, continuing the theme of word problems but with discrete variables for numbers of people, goods, or costs, [1] [6] and also including material on divisibility, prime numbers, and the Chinese remainder theorem. [4] Numeral systems and cryptarithms. [4] [6]
The concept of pairwise coprimality is important as a hypothesis in many results in number theory, such as the Chinese remainder theorem. It is possible for an infinite set of integers to be pairwise coprime. Notable examples include the set of all prime numbers, the set of elements in Sylvester's sequence, and the set of all Fermat numbers.
The Chinese remainder theorem appears as an exercise [16] in Sunzi Suanjing (3rd, 4th or 5th century CE). [17] (There is one important step glossed over in Sunzi's solution: [note 4] it is the problem that was later solved by Āryabhaṭa's Kuṭṭaka – see below.)
Ads
related to: remainder theorem word problemsgenerationgenius.com has been visited by 100K+ users in the past month