Search results
Results from the WOW.Com Content Network
In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...
The second factor to be considered are the values of the concentrations taken into account in the Nernst equation. To define a formal reduction potential for a biochemical reaction, the pH value, the concentrations values and the hypotheses made on the activity coefficients must always be clearly indicated.
That value is also the standard formation energy (∆G f °) for an Fe 2+ ion, since e − and Fe(s) both have zero formation energy. Data from different sources may cause table inconsistencies.
The galvanic cell potential results from the voltage difference of a pair of electrodes. It is not possible to measure an absolute value for each electrode separately. However, the potential of a reference electrode, standard hydrogen electrode (SHE), is defined as to 0.00 V. An electrode with unknown electrode potential can be paired with ...
To avoid possible ambiguities, the electrode potential thus defined can also be referred to as Gibbs–Stockholm electrode potential. In both conventions, the standard hydrogen electrode is defined to have a potential of 0 V. Both conventions also agree on the sign of E for a half-cell reaction when it is written as a reduction.
The cell reaction is generally endothermic: i.e. it will extract heat from its environment. [ citation needed ] The Gibbs energy calculation generally assumes an infinite thermal reservoir to maintain a constant temperature, but in a practical case, the reaction will cool the electrode interface and slow the reaction occurring there.
In electrochemistry, the electrochemical potential of electrons (or any other species) is the total potential, including both the (internal, nonelectrical) chemical potential and the electric potential, and is by definition constant across a device in equilibrium, whereas the chemical potential of electrons is equal to the electrochemical ...
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process.