enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    For larger numbers, especially when using a computer, various more sophisticated factorization algorithms are more efficient. A prime factorization algorithm typically involves testing whether each factor is prime each time a factor is found. When the numbers are sufficiently large, no efficient non-quantum integer factorization algorithm is ...

  3. Integer factorization records - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization_records

    Integer factorization is the process of determining which prime numbers divide a given positive integer.Doing this quickly has applications in cryptography.The difficulty depends on both the size and form of the number and its prime factors; it is currently very difficult to factorize large semiprimes (and, indeed, most numbers that have no small factors).

  4. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    Ω(n), the prime omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities). A prime number has Ω(n) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS). There are many special types of prime numbers. A composite number has Ω(n) > 1.

  5. RSA Factoring Challenge - Wikipedia

    en.wikipedia.org/wiki/RSA_Factoring_Challenge

    They published a list of semiprimes (numbers with exactly two prime factors) known as the RSA numbers, with a cash prize for the successful factorization of some of them. The smallest of them, a 100-decimal digit number called RSA-100 was factored by April 1, 1991.

  6. RSA numbers - Wikipedia

    en.wikipedia.org/wiki/RSA_numbers

    RSA-100 has 100 decimal digits (330 bits). Its factorization was announced on April 1, 1991, by Arjen K. Lenstra. [3] [4] Reportedly, the factorization took a few days using the multiple-polynomial quadratic sieve algorithm on a MasPar parallel computer. [5] The value and factorization of RSA-100 are as follows:

  7. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    When using such algorithms to factor a large number n, it is necessary to search for smooth numbers (i.e. numbers with small prime factors) of order n 1/2. The size of these values is exponential in the size of n (see below). The general number field sieve, on the other hand, manages to search for smooth numbers that are subexponential in the ...

  8. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. [3] [4] [5] For example,

  9. Pollard's p − 1 algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard%27s_p_%E2%88%92_1...

    If a number x is congruent to 1 modulo a factor of n, then the gcd(x − 1, n) will be divisible by that factor. The idea is to make the exponent a large multiple of p − 1 by making it a number with very many prime factors; generally, we take the product of all prime powers less than some limit B.