enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shape of the universe - Wikipedia

    en.wikipedia.org/wiki/Shape_of_the_universe

    The curvature of the universe places constraints on the topology. If the spatial geometry is spherical, i.e., possess positive curvature, the topology is compact. For a flat (zero curvature) or a hyperbolic (negative curvature) spatial geometry, the topology can be either compact or infinite. [8]

  3. Friedmann equations - Wikipedia

    en.wikipedia.org/wiki/Friedmann_equations

    The cosmological principle implies that the metric of the universe must be of the form = where ds 3 2 is a three-dimensional metric that must be one of (a) flat space, (b) a sphere of constant positive curvature or (c) a hyperbolic space with constant negative curvature. This metric is called the Friedmann–Lemaître–Robertson–Walker (FLRW ...

  4. Curved space - Wikipedia

    en.wikipedia.org/wiki/Curved_space

    The Friedmann–Lemaître–Robertson–Walker metric is a curved metric which forms the current foundation for the description of the expansion of the universe and the shape of the universe. [citation needed] The fact that photons have no mass yet are distorted by gravity, means that the explanation would have to be something besides photonic ...

  5. Friedmann–Lemaître–Robertson–Walker metric - Wikipedia

    en.wikipedia.org/wiki/Friedmann–Lemaître...

    In other words, the energy (relative to the origin) of a co-moving particle in free-fall is conserved. General relativity merely adds a connection between the spatial curvature of the universe and the energy of such a particle: positive total energy implies negative curvature and negative total energy implies positive curvature.

  6. Flatness problem - Wikipedia

    en.wikipedia.org/wiki/Flatness_problem

    In the case of the flatness problem, the parameter which appears fine-tuned is the density of matter and energy in the universe. This value affects the curvature of space-time, with a very specific critical value being required for a flat universe. The current density of the universe is observed to be very close to this critical value.

  7. Anti-de Sitter space - Wikipedia

    en.wikipedia.org/wiki/Anti-de_Sitter_space

    Manifolds of constant curvature are most familiar in the case of two dimensions, where the elliptic plane or surface of a sphere is a surface of constant positive curvature, a flat (i.e., Euclidean) plane is a surface of constant zero curvature, and a hyperbolic plane is a surface of constant negative curvature. Einstein's general theory of ...

  8. Static universe - Wikipedia

    en.wikipedia.org/wiki/Static_universe

    Einstein's static universe is closed (i.e. has hyperspherical topology and positive spatial curvature), and contains uniform dust and a positive cosmological constant with value precisely = /, where is Newtonian gravitational constant, is the energy density of the matter in the universe and is the speed of light.

  9. De Sitter space - Wikipedia

    en.wikipedia.org/wiki/De_Sitter_space

    In mathematical physics, n-dimensional de Sitter space (often denoted dS n) is a maximally symmetric Lorentzian manifold with constant positive scalar curvature.It is the Lorentzian [further explanation needed] analogue of an n-sphere (with its canonical Riemannian metric).