Ad
related to: calculus in real life ppt
Search results
Results from the WOW.Com Content Network
Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the calculus of infinitesimals", it has two major branches, differential calculus and integral calculus.
Fundamental theorem of calculus; Integration by parts; Inverse chain rule method; Integration by substitution. Tangent half-angle substitution; Differentiation under the integral sign; Trigonometric substitution; Partial fractions in integration. Quadratic integral; Proof that 22/7 exceeds π; Trapezium rule; Integral of the secant function ...
Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, . [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.
Multivariable calculus (also known as multivariate calculus) is the extension of calculus in one variable to calculus with functions of several variables: the differentiation and integration of functions involving multiple variables (multivariate), rather than just one.
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds.It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra.
In calculus and real analysis, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity.The notion of absolute continuity allows one to obtain generalizations of the relationship between the two central operations of calculus—differentiation and integration.
An example of a solenoidal vector field, (,) = (,) In vector calculus a solenoidal vector field (also known as an incompressible vector field, a divergence-free vector field, or a transverse vector field) is a vector field v with divergence zero at all points in the field: =
In calculus, Rolle's theorem or Rolle's lemma essentially states that any real-valued differentiable function that attains equal values at two distinct points must have at least one point, somewhere between them, at which the slope of the tangent line is zero.
Ad
related to: calculus in real life ppt