enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Henderson–Hasselbalch equation - Wikipedia

    en.wikipedia.org/wiki/Henderson–Hasselbalch...

    The Henderson–Hasselbalch equation can be used to model these equilibria. It is important to maintain this pH of 7.4 to ensure enzymes are able to work optimally. [10] Life threatening Acidosis (a low blood pH resulting in nausea, headaches, and even coma, and convulsions) is due to a lack of functioning of enzymes at a low pH. [10]

  3. pH - Wikipedia

    en.wikipedia.org/wiki/PH

    Pure water has a pH of 7 at 25°C, meaning it is neutral. When an acid is dissolved in water, the pH will be less than 7, while a base, or alkali, will have a pH greater than 7. A strong acid, such as hydrochloric acid, at concentration 1 mol dm −3 has a pH of 0, while a strong alkali like sodium hydroxide, at the same concentration, has a pH ...

  4. Acid strength - Wikipedia

    en.wikipedia.org/wiki/Acid_strength

    Its conjugate base is the acetate ion with K b = 10 −14 /K a = 5.7 x 10 −10 (from the relationship K a × K b = 10 −14), which certainly does not correspond to a strong base. The conjugate of a weak acid is often a weak base and vice versa.

  5. Acid dissociation constant - Wikipedia

    en.wikipedia.org/wiki/Acid_dissociation_constant

    Likewise, any aqueous base with an association constant pK b less than about 0, corresponding to pK a greater than about 14, is leveled to OH − and is considered a strong base. [22] Nitric acid, with a pK value of around −1.7, behaves as a strong acid in aqueous solutions with a pH greater than 1. [23] At lower pH values it behaves as a ...

  6. Wikipedia:Reference desk/Archives/Science/2023 April 1 ...

    en.wikipedia.org/wiki/Wikipedia:Reference_desk/...

    I don't believe you can use the pH = 14 - pOH to calculate the pH of strong bases if the pH would otherwise be over 14, right? I believe the biggest molarity of NaOH and Ca(OH)2 is 4 M and .016 M, per molecular weight. If we used the above formula, and try to calculate the pH of 1 M NaOH and 4 M NaOH, we get: [OH-] = 1 M pH = 14 - pOH

  7. Acid–base titration - Wikipedia

    en.wikipedia.org/wiki/Acid–base_titration

    The pH after the equivalence point depends on the concentration of the conjugate base of the weak acid and the strong base of the titrant. However, the base of the titrant is stronger than the conjugate base of the acid. Therefore, the pH in this region is controlled by the strong base. As such the pH can be found using the following: [1]

  8. Acid neutralizing capacity - Wikipedia

    en.wikipedia.org/wiki/Acid_neutralizing_capacity

    Acid-neutralizing capacity or ANC in short is a measure for the overall buffering capacity against acidification of a solution, e.g. surface water or soil water.. ANC is defined as the difference between cations of strong bases and anions of strong acids (see below), or dynamically as the amount of acid needed to change the pH value from the sample's value to a chosen different value. [1]

  9. Base excess - Wikipedia

    en.wikipedia.org/wiki/Base_excess

    Base excess is defined as the amount of strong acid that must be added to each liter of fully oxygenated blood to return the pH to 7.40 at a temperature of 37°C and a pCO 2 of 40 mmHg (5.3 kPa). [2] A base deficit (i.e., a negative base excess) can be correspondingly defined by the amount of strong base that must be added.