Search results
Results from the WOW.Com Content Network
Electric dipole p and its torque τ in a uniform E field. An object with an electric dipole moment p is subject to a torque τ when placed in an external electric field E. The torque tends to align the dipole with the field. A dipole aligned parallel to an electric field has lower potential energy than a
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
The electric potential and the magnetic vector potential together form a four-vector, so that the two kinds of potential are mixed under Lorentz transformations. Practically, the electric potential is a continuous function in all space, because a spatial derivative of a discontinuous electric potential yields an electric field of impossibly ...
An electric dipole deals with the separation of the positive and negative electric charges found in any electromagnetic system. A simple example of this system is a pair of charges of equal magnitude but opposite sign separated by some typically small distance. (A permanent electric dipole is called an electret.)
The polarizability of an atom or molecule is defined as the ratio of its induced dipole moment to the local electric field; in a crystalline solid, one considers the dipole moment per unit cell. [1] Note that the local electric field seen by a molecule is generally different from the macroscopic electric field that would be measured externally.
Many times in the use and calculation of electric and magnetic fields, the approach used first computes an associated potential: the electric potential, , for the electric field, and the magnetic vector potential, A, for the magnetic field. The electric potential is a scalar field, while the magnetic potential is a vector field.
Typical dipole moments for simple diatomic molecules are in the range of 0 to 11 D. Molecules with symmetry point groups or containing inversion symmetry will not have a permanent dipole moment, while highly ionic molecular species have a very large dipole moment, e.g. gas-phase potassium bromide, KBr, with a dipole moment of 10.41 D. [3] A proton and an electron 1 Å apart have a dipole ...
Within the Standard Model, such a dipole is predicted to be non-zero but very small, at most 10 −38 e⋅cm, [2] where e stands for the elementary charge. The discovery of a substantially larger electron electric dipole moment would imply a violation of both parity invariance and time reversal invariance. [3] [4]