Search results
Results from the WOW.Com Content Network
Potential map of a physical electric dipole. Negative potentials are in blue; positive potentials, in red. An ideal dipole consists of two opposite charges with infinitesimal separation. We compute the potential and field of such an ideal dipole starting with two opposite charges at separation d > 0, and taking the limit as d → 0.
Therefore, a molecule's dipole is an electric dipole with an inherent electric field that should not be confused with a magnetic dipole, which generates a magnetic field. The physical chemist Peter J. W. Debye was the first scientist to study molecular dipoles extensively, and, as a consequence, dipole moments are measured in the non- SI unit ...
The electric potential and the magnetic vector potential together form a four-vector, so that the two kinds of potential are mixed under Lorentz transformations. Practically, the electric potential is a continuous function in all space, because a spatial derivative of a discontinuous electric potential yields an electric field of impossibly ...
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
Monopole moments have a 1/r rate of decrease, dipole moments have a 1/r 2 rate, quadrupole moments have a 1/r 3 rate, and so on. The higher the order, the faster the potential drops off. Since the lowest-order term observed in magnetic sources is the dipole term, it dominates at large distances.
Due to polarization the positive bound charge + will be displaced a distance relative to the negative bound charge , giving rise to a dipole moment =. Substitution of this expression in ( 1 ) yields P = d q b d V d {\displaystyle \mathbf {P} ={\mathrm {d} q_{b} \over \mathrm {d} V}\mathbf {d} }
The method of image charges (also known as the method of images and method of mirror charges) is a basic problem-solving tool in electrostatics.The name originates from the replacement of certain elements in the original layout with fictitious charges, which replicates the boundary conditions of the problem (see Dirichlet boundary conditions or Neumann boundary conditions).
The electron electric dipole moment d e is an intrinsic property of an electron such that the potential energy is linearly related to the strength of the electric field: U = − d e ⋅ E . {\displaystyle U=-\mathbf {d} _{\rm {e}}\cdot \mathbf {E} .}