Search results
Results from the WOW.Com Content Network
Stereoscopy creates the impression of three-dimensional depth from a pair of two-dimensional images. [5] Human vision, including the perception of depth, is a complex process, which only begins with the acquisition of visual information taken in through the eyes; much processing ensues within the brain, as it strives to make sense of the raw information.
A 3D or 3-D (three-dimensional) film or S3D (stereoscopic 3D) film [5] is a motion picture that enhances the depth cues seen by the viewer. The most common approach to the production of 3D films is derived from stereoscopic photography.
Disadvantages of stereo cards, slides or any other hard copy or print are that the two images are likely to receive differing wear, scratches and other decay. This results in stereo artifacts when the images are viewed. These artifacts compete in the mind resulting in a distraction from the 3D effect, eye strain and headaches.
Computer stereo vision is the extraction of 3D information from digital images, such as those obtained by a CCD camera. By comparing information about a scene from two vantage points, 3D information can be extracted by examining the relative positions of objects in the two panels. This is similar to the biological process of stereopsis.
An example of monocular portrait images of human faces that have been converted to create a moving 3D photo using depth estimation via Machine Learning using TensorFlow.js [3] in the browser. With advances in machine learning and computer vision, [3] it is now also possible to recreate this effect using a single monocular image as an input. [4]
An active shutter 3D system (a.k.a. alternate frame sequencing, alternate image, AI, alternating field, field sequential or eclipse method) is a technique for displaying stereoscopic 3D images. It works by only presenting the image intended for the left eye while blocking the right eye's view, then presenting the right-eye image while blocking ...
Autostereoscopy is any method of displaying stereoscopic images (adding binocular perception of 3D depth) without the use of special headgear, glasses, something that affects vision, or anything for eyes on the part of the viewer. Because headgear is not required, it is also called "glasses-free 3D" or "glassesless 3D".
Anaglyph 3D is the stereoscopic 3D effect achieved by means of encoding each eye's image using filters of different (usually chromatically opposite) colors, typically red and cyan. Anaglyph 3D images contain two differently filtered colored images, one for each eye.