Search results
Results from the WOW.Com Content Network
The gravitational potential (V) at a location is the gravitational potential energy (U) at that location per unit mass: =, where m is the mass of the object. Potential energy is equal (in magnitude, but negative) to the work done by the gravitational field moving a body to its given position in space from infinity.
Conversely, as two massive objects move towards each other, the motion accelerates under gravity causing an increase in the (positive) kinetic energy of the system and, in order to conserve the total sum of energy, the increase of the same amount in the gravitational potential energy of the object is treated as negative.
For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.
where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses, and G is the gravitational constant. The first test of Newton's law of gravitation between masses in the laboratory was the Cavendish experiment conducted by the British scientist Henry ...
The product GM is the standard gravitational parameter and is often known to higher precision than G or M separately. The potential has units of energy per mass, e.g., J/kg in the MKS system. By convention, it is always negative where it is defined, and as x tends to infinity, it approaches zero.
For convenience it is often defined as the negative of the potential energy per unit mass, so that the gravity vector is obtained as the gradient of the geopotential, without the negation. In addition to the actual potential (the geopotential), a theoretical normal potential and their difference, the disturbing potential, can also be defined.
Gravity batteries store gravitational potential energy by lifting a mass to a certain height using a pump, crane, or motor. After the mass is lifted, it now stores a certain gravitational potential energy based on the mass of the object and how high it was lifted. The stored gravitational potential energy is then transferred into electricity.
In mathematics and mathematical physics, potential theory is the study of harmonic functions.. The term "potential theory" was coined in 19th-century physics when it was realized that two fundamental forces of nature known at the time, namely gravity and the electrostatic force, could be modeled using functions called the gravitational potential and electrostatic potential, both of which ...