Search results
Results from the WOW.Com Content Network
In chemistry, an electrophile is a chemical species that forms bonds with nucleophiles by accepting an electron pair. [1] Because electrophiles accept electrons, they are Lewis acids . [ 2 ] Most electrophiles are positively charged , have an atom that carries a partial positive charge, or have an atom that does not have an octet of electrons.
The terms nucleophile and electrophile are sometimes interchangeable with Lewis base and Lewis acid, respectively. These terms, especially their abstract noun forms nucleophilicity and electrophilicity , emphasize the kinetic aspect of reactivity, while the Lewis basicity and Lewis acidity emphasize the thermodynamic aspect of Lewis adduct ...
This makes the molecule an electrophile, and the carbon atom the electrophilic center; this atom is the primary target for the nucleophile. Chemists have developed a geometric system to describe the approach of the nucleophile to the electrophilic center, using two angles, the Bürgi–Dunitz and the Flippin–Lodge angles after scientists that ...
The driving force for this reaction is the formation of an electrophile X + that forms a covalent bond with an electron-rich, unsaturated C=C bond. The positive charge on X is transferred to the carbon-carbon bond, forming a carbocation during the formation of the C-X bond.
HSAB is an acronym for "hard and soft (Lewis) acids and bases".HSAB is widely used in chemistry for explaining the stability of compounds, reaction mechanisms and pathways. It assigns the terms 'hard' or 'soft', and 'acid' or 'base' to chemical species.
A nitrogen bound to both a good electrofuge and a good nucleofuge is known as a nitrenoid (for its resemblance to a nitrene). [2] Nitrenes lack a full octet of electrons are thus highly electrophilic; nitrenoids exhibit analogous behavior and are often good substrates for electrophilic amination reactions.
Electrostatic potential map of a water molecule, where the oxygen atom has a more negative charge (red) than the positive (blue) hydrogen atoms. Electronegativity, symbolized as χ, is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. [1]
Monofluorinated compounds have a strong band between 1000 and 1110 cm −1; with more than one fluorine atoms, the band splits into two bands, one for the symmetric mode and one for the asymmetric. [13] The carbon–fluorine bands are so strong that they may obscure any carbon–hydrogen bands that might be present. [14]