Search results
Results from the WOW.Com Content Network
Under specious pressure from Fisher, Barnard retracted his test in a published paper, [8] however many researchers prefer Barnard’s exact test over Fisher's exact test for analyzing 2 × 2 contingency tables, [9] since its statistics are more powerful for the vast majority of experimental designs, whereas Fisher’s exact test statistics are conservative, meaning the significance shown by ...
In statistical hypothesis testing, a two-sample test is a test performed on the data of two random samples, each independently obtained from a different given population. The purpose of the test is to determine whether the difference between these two populations is statistically significant .
Statistical hypothesis testing is a key technique of both frequentist inference and Bayesian inference, although the two types of inference have notable differences. Statistical hypothesis tests define a procedure that controls (fixes) the probability of incorrectly deciding that a default position ( null hypothesis ) is incorrect.
In the design-based approach, the model is taken to be known, and one of the goals is to ensure that the sample data are selected randomly enough for inference. Statistical assumptions can be put into two classes, depending upon which approach to inference is used. Model-based assumptions. These include the following three types:
A permutation test involves two or more samples. The null hypothesis is that all samples come from the same distribution H 0 : F = G {\displaystyle H_{0}:F=G} . Under the null hypothesis , the distribution of the test statistic is obtained by calculating all possible values of the test statistic under possible rearrangements of the observed data.
Statistical inference makes propositions about a population, using data drawn from the population with some form of sampling.Given a hypothesis about a population, for which we wish to draw inferences, statistical inference consists of (first) selecting a statistical model of the process that generates the data and (second) deducing propositions from the model.
Informally, a statistical model can be thought of as a statistical assumption (or set of statistical assumptions) with a certain property: that the assumption allows us to calculate the probability of any event. As an example, consider a pair of ordinary six-sided dice. We will study two different statistical assumptions about the dice.
The theory of statistics provides a basis for the whole range of techniques, in both study design and data analysis, that are used within applications of statistics. [1] [2] The theory covers approaches to statistical-decision problems and to statistical inference, and the actions and deductions that satisfy the basic principles stated for these different approaches.