Search results
Results from the WOW.Com Content Network
To apply a Q test for bad data, arrange the data in order of increasing values and calculate Q as defined: Q = gap range {\displaystyle Q={\frac {\text{gap}}{\text{range}}}} Where gap is the absolute difference between the outlier in question and the closest number to it.
Tobin's q [a] (or the q ratio, and Kaldor's v), is the ratio between a physical asset's market value and its replacement value. It was first introduced by Nicholas Kaldor in 1966 in his paper: Marginal Productivity and the Macro-Economic Theories of Distribution: Comment on Samuelson and Modigliani .
The first quartile (Q 1) is defined as the 25th percentile where lowest 25% data is below this point. It is also known as the lower quartile. The second quartile (Q 2) is the median of a data set; thus 50% of the data lies below this point. The third quartile (Q 3) is the 75th percentile where
The Q-statistic or q-statistic is a test statistic: . The Box-Pierce test outputs a Q-statistic (uppercase) which follows the chi-squared distribution . The Ljung-Box test is a modified version of the Box-Pierce test which provides better small sample properties
The lower quartile corresponds with the 25th percentile and the upper quartile corresponds with the 75th percentile, so IQR = Q 3 − Q 1 [1]. The IQR is an example of a trimmed estimator , defined as the 25% trimmed range , which enhances the accuracy of dataset statistics by dropping lower contribution, outlying points. [ 5 ]
The area below the red curve is the same in the intervals (−∞,Q 1), (Q 1,Q 2), (Q 2,Q 3), and (Q 3,+∞). In statistics and probability, quantiles are cut points dividing the range of a probability distribution into continuous intervals with equal probabilities, or dividing the observations in a sample in the same way. There is one fewer ...
The quadrant count ratio (QCR) is a measure of the association between two quantitative variables. The QCR is not commonly used in the practice of statistics ; rather, it is a useful tool in statistics education because it can be used as an intermediate step in the development of Pearson's correlation coefficient .
The q-value can be interpreted as the false discovery rate (FDR): the proportion of false positives among all positive results. Given a set of test statistics and their associated q-values, rejecting the null hypothesis for all tests whose q-value is less than or equal to some threshold ensures that the expected value of the false discovery rate is .