Search results
Results from the WOW.Com Content Network
Because a dalton, a unit commonly used to measure atomic mass, is exactly 1/12 of the mass of a carbon-12 atom, this definition of the mole entailed that the mass of one mole of a compound or element in grams was numerically equal to the average mass of one molecule or atom of the substance in daltons, and that the number of daltons in a gram ...
Historically, the mole was defined as the amount of substance in 12 grams of the carbon-12 isotope.As a consequence, the mass of one mole of a chemical compound, in grams, is numerically equal (for all practical purposes) to the mass of one molecule or formula unit of the compound, in daltons, and the molar mass of an isotope in grams per mole is approximately equal to the mass number ...
The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [ 2 ] or the conventional atomic weight.
Change in volume with increasing ethanol fraction. The molar volume of a substance i is defined as its molar mass divided by its density ρ i 0: , = For an ideal mixture containing N components, the molar volume of the mixture is the weighted sum of the molar volumes of its individual components.
The molar mass constant, usually denoted by M u, is a physical constant defined as one twelfth of the molar mass of carbon-12: M u = M(12 C)/12. [1] The molar mass of an element or compound is its relative atomic mass (atomic weight) or relative molecular mass (molecular weight or formula weight) multiplied by the molar mass constant.
It is one way of expressing the composition of a mixture in a dimensionless size; mole fraction (percentage by moles, mol%) and volume fraction (percentage by volume, vol%) are others. When the prevalences of interest are those of individual chemical elements , rather than of compounds or other substances, the term mass fraction can also refer ...
The standard atomic weight takes into account the isotopic distribution of the element in a given sample (usually assumed to be "normal"). For example, water has a molar mass of 18.0153(3) g/mol, but individual water molecules have molecular masses which range between 18.010 564 6863(15) Da ( 1 H
The equivalent weight of an element is the mass which combines with or displaces 1.008 gram of hydrogen or 8.0 grams of oxygen or 35.5 grams of chlorine. The equivalent weight of an element is the mass of a mole of the element divided by the element's valence. That is, in grams, the atomic weight of the element divided by the usual valence. [2]