Search results
Results from the WOW.Com Content Network
Quantile functions are used in both statistical applications and Monte Carlo methods. The quantile function is one way of prescribing a probability distribution, and it is an alternative to the probability density function (pdf) or probability mass function, the cumulative distribution function (cdf) and the characteristic function.
In December 2011, VectorWise 2.0 was released [38] with new SQL support for analytical functions such as rank and percentile and enhanced date, time and timestamp datatypes, and support for disk spilling in hash joins and aggregation. In June 2012, VectorWise 2.5 was released. [39]
The summary function, when applied to a vector, displays the five-number summary together with the mean (which is not itself a part of the five-number summary). The fivenum uses a different method to calculate percentiles than the summary function.
In statistics, a k-th percentile, also known as percentile score or centile, is a score (e.g., a data point) below which a given percentage k of arranged scores in its frequency distribution falls ("exclusive" definition) or a score at or below which a given percentage falls ("inclusive" definition); i.e. a score in the k-th percentile would be above approximately k% of all scores in its set.
The figure illustrates the percentile rank computation and shows how the 0.5 × F term in the formula ensures that the percentile rank reflects a percentage of scores less than the specified score. For example, for the 10 scores shown in the figure, 60% of them are below a score of 4 (five less than 4 and half of the two equal to 4) and 95% are ...
For instance, the 10% trimmed mean is the average of the 5th to 95th percentile of the data, while the 90% winsorized mean sets the bottom 5% to the 5th percentile, the top 5% to the 95th percentile, and then averages the data. Winsorizing thus does not change the total number of values in the data set, N.
The QUARTILE function is a legacy function from Excel 2007 or earlier, giving the same output of the function QUARTILE.INC. In the function, array is the dataset of numbers that is being analyzed and quart is any of the following 5 values depending on which quartile is being calculated. [8]
Data profiling utilizes methods of descriptive statistics such as minimum, maximum, mean, mode, percentile, standard deviation, frequency, variation, aggregates such as count and sum, and additional metadata information obtained during data profiling such as data type, length, discrete values, uniqueness, occurrence of null values, typical string patterns, and abstract type recognition.