Search results
Results from the WOW.Com Content Network
The spectral series of hydrogen, on a logarithmic scale. The emission spectrum of atomic hydrogen has been divided into a number of spectral series, with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels in an atom.
The Balmer series is particularly useful in astronomy because the Balmer lines appear in numerous stellar objects due to the abundance of hydrogen in the universe, and therefore are commonly seen and relatively strong compared to lines from other elements. The first two Balmer lines correspond to the Fraunhofer lines C and F. The spectral ...
A hydrogen atom with proton and electron spins aligned (top) undergoes a flip of the electron spin, resulting in emission of a photon with a 21 cm wavelength (bottom) The hydrogen line, 21 centimeter line, or H I line [a] is a spectral line that is created by a change in the energy state of solitary, electrically neutral hydrogen atoms.
The phrase "spectral lines", when not qualified, usually refers to lines having wavelengths in the visible band of the full electromagnetic spectrum. Many spectral lines occur at wavelengths outside this range. At shorter wavelengths, which correspond to higher energies, ultraviolet spectral lines include the Lyman series of hydrogen.
The spectrum appears in a series of lines called the line spectrum. This line spectrum is called an atomic spectrum when it originates from an atom in elemental form. Each element has a different atomic spectrum. The production of line spectra by the atoms of an element indicate that an atom can radiate only a certain amount of energy.
Rydberg's formula as it appears in a November 1888 record. In atomic physics, the Rydberg formula calculates the wavelengths of a spectral line in many chemical elements.The formula was primarily presented as a generalization of the Balmer series for all atomic electron transitions of hydrogen.
This could only be applied to hydrogen-like atoms. In 1908 Ritz derived a relationship that could be applied to all atoms which he calculated prior to the first 1913 quantum atom and his ideas are based on classical mechanics. [10] This principle, the Rydberg–Ritz combination principle, is used today in identifying the transition lines of atoms.
In physics and chemistry, the Lyman series is a hydrogen spectral series of transitions and resulting ultraviolet emission lines of the hydrogen atom as an electron goes from n ≥ 2 to n = 1 (where n is the principal quantum number), the lowest energy level of the electron (groundstate).