enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trigonal pyramidal molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_pyramidal...

    This would result in the geometry of a regular tetrahedron with each bond angle equal to arccos(− ⁠ 1 / 3 ⁠) ≈ 109.5°. However, the three hydrogen atoms are repelled by the electron lone pair in a way that the geometry is distorted to a trigonal pyramid (regular 3-sided pyramid) with bond angles

  3. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    The bond angle is 90 degrees. For example, sulfur hexafluoride (SF 6) is an octahedral molecule. Trigonal pyramidal: A trigonal pyramidal molecule has a pyramid-like shape with a triangular base. Unlike the linear and trigonal planar shapes but similar to the tetrahedral orientation, pyramidal shapes require three dimensions in order to fully ...

  4. Trigonal bipyramidal molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_bipyramidal...

    In chemistry, a trigonal bipyramid formation is a molecular geometry with one atom at the center and 5 more atoms at the corners of a triangular bipyramid. [1] This is one geometry for which the bond angles surrounding the central atom are not identical (see also pentagonal bipyramid), because there is no geometrical arrangement with five terminal atoms in equivalent positions.

  5. VSEPR theory - Wikipedia

    en.wikipedia.org/wiki/VSEPR_theory

    Finally, the methyl radical (CH 3) is predicted to be trigonal pyramidal like the methyl anion (CH − 3), but with a larger bond angle (as in the trigonal planar methyl cation (CH + 3)). However, in this case, the VSEPR prediction is not quite true, as CH 3 is actually planar, although its distortion to a pyramidal geometry requires very ...

  6. T-shaped molecular geometry - Wikipedia

    en.wikipedia.org/wiki/T-shaped_molecular_geometry

    Ordinarily, three-coordinated compounds adopt trigonal planar or pyramidal geometries. Examples of T-shaped molecules are the halogen trifluorides, such as ClF 3. [1] According to VSEPR theory, T-shaped geometry results when three ligands and two lone pairs of electrons are bonded to the central atom, written in AXE notation as AX 3 E 2.

  7. Seesaw molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Seesaw_molecular_geometry

    The ideal angle between the axial ligands and the equatorial ligands is 90°; whereas the ideal angle between the two equatorial ligands themselves is 120°. Disphenoidal molecules, like trigonal bipyramidal ones, are subject to Berry pseudorotation in which the axial ligands move to equatorial positions and vice versa. This exchange of ...

  8. Tetrahedral molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_molecular_geometry

    In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron.The bond angles are arccos(− ⁠ 1 / 3 ⁠) = 109.4712206...° ≈ 109.5° when all four substituents are the same, as in methane (CH 4) [1] [2] as well as its heavier analogues.

  9. Bent molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Bent_molecular_geometry

    The bond angle between the two hydrogen atoms is approximately 104.45°. [1] Nonlinear geometry is commonly observed for other triatomic molecules and ions containing only main group elements, prominent examples being nitrogen dioxide (NO 2 ), sulfur dichloride (SCl 2 ), and methylene (CH 2 ).