enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Anabatic wind - Wikipedia

    en.wikipedia.org/wiki/Anabatic_wind

    An anabatic wind, from the Greek anabatos, verbal of anabainein meaning "moving upward", is a warm wind which blows up a steep slope or mountain side, driven by heating of the slope through insolation. [1] [2] It is also known as upslope flow. These winds typically occur during the daytime in calm sunny weather.

  3. Atmospheric instability - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_instability

    Whether or not the atmosphere has stability depends partially on the moisture content. In a very dry troposphere, a temperature decrease with height less than 9.8 °C (17.6 °F) per kilometer ascent indicates stability, while greater changes indicate instability. This lapse rate is known as the dry adiabatic lapse rate. [3]

  4. Mountain breeze and valley breeze - Wikipedia

    en.wikipedia.org/wiki/Mountain_breeze_and_valley...

    Diurnal wind system variation in the Appalachian mountain range. Mountain and valley breezes form through a process similar to sea and land breezes. During the day, the sun heats up mountain air rapidly while the valley remains relatively cooler. Convection causes it to rise, causing a valley breeze. At night, the process is reversed.

  5. Convective instability - Wikipedia

    en.wikipedia.org/wiki/Convective_instability

    The dry adiabatic lapse rate (for unsaturated air) is 3 °C (5.4 °F) per 1,000 vertical feet (300 m). The moist adiabatic lapse rate varies from 1.1 to 2.8 °C (2.0 to 5.0 °F) per 1,000 vertical feet (300 m). The combination of moisture and temperature determine the stability of the air and the resulting weather. Cool, dry air is very stable ...

  6. Isentropic analysis - Wikipedia

    en.wikipedia.org/wiki/Isentropic_analysis

    Isentropic analysis of the 300 kelvin isotrope and the weather satellite image of clouds during a blizzard in Colorado. In meteorology, isentropic analysis is a technique used to find the vertical and horizontal motion of airmasses during an adiabatic (i.e. non-heat-exchanging) process above the planetary boundary layer.

  7. Level of free convection - Wikipedia

    en.wikipedia.org/wiki/Level_of_free_convection

    Diagram showing an air parcel path when raised along B-C-E compared to the surrounding air mass Temperature (T) and humidity (Tw); see CAPE. The level of free convection (LFC) is the altitude in the atmosphere where an air parcel lifted adiabatically until saturation becomes warmer than the environment at the same level, so that positive buoyancy can initiate self-sustained convection.

  8. Lee wave - Wikipedia

    en.wikipedia.org/wiki/Lee_wave

    The wind flows towards a mountain and produces a first oscillation (A) followed by more waves. The following waves will have lower amplitude because of the natural damping. Lenticular clouds stuck on top of the flow (A) and (B) will appear immobile despite the strong wind. Lenticular clouds. In meteorology, lee waves are atmospheric stationary ...

  9. Atmospheric thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_thermodynamics

    Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...