Search results
Results from the WOW.Com Content Network
Multiple DNA polymerases take on different roles in the DNA replication process. In E. coli, DNA Pol III is the polymerase enzyme primarily responsible for DNA replication. It assembles into a replication complex at the replication fork that exhibits extremely high processivity, remaining intact for the entire replication cycle.
The process of transcription is a major source of DNA damage, due to the formation of single-strand DNA intermediates that are vulnerable to damage. [53] The regulation of transcription by processes using base excision repair and/or topoisomerases to cut and remodel the genome also increases the vulnerability of DNA to damage. [53]
This mechanism is conserved from prokaryotes to eukaryotes and is known as semiconservative DNA replication. The process of semiconservative replication for the site of DNA replication is a fork-like DNA structure, the replication fork, where the DNA helix is open, or unwound, exposing unpaired DNA nucleotides for recognition and base pairing ...
Reverse transcription is the transfer of information from RNA to DNA (the reverse of normal transcription). This is known to occur in the case of retroviruses, such as HIV, as well as in eukaryotes, in the case of retrotransposons and telomere synthesis. It is the process by which genetic information from RNA gets transcribed into new DNA.
Eukaryotic Transcription. Eukaryotic transcription is the elaborate process that eukaryotic cells use to copy genetic information stored in DNA into units of transportable complementary RNA replica. [1] Gene transcription occurs in both eukaryotic and prokaryotic cells. Unlike prokaryotic RNA polymerase that initiates the transcription of all ...
More than five decades ago, Jacob, Brenner, and Cuzin proposed the replicon hypothesis to explain the regulation of chromosomal DNA synthesis in E. coli. [18] The model postulates that a diffusible, trans-acting factor, a so-called initiator, interacts with a cis-acting DNA element, the replicator, to promote replication onset at a nearby origin.
Bacterial transcription is the process in which a segment of bacterial DNA is copied into a newly synthesized strand of messenger RNA (mRNA) with use of the enzyme RNA polymerase. The process occurs in three main steps: initiation, elongation, and termination; and the result is a strand of mRNA that is complementary to a single strand of DNA.
During S-phase, the cell converts pre-RCs into active replication forks to initiate DNA replication. [4] This process depends on the kinase activity of Cdc7 and various S-phase CDKs, both of which are upregulated upon S-phase entry. [4] Activation of the pre-RC is a closely regulated and highly sequential process.