enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    Thus, the second partial derivative test indicates that f(x, y) has saddle points at (0, −1) and (1, −1) and has a local maximum at (,) since = <. At the remaining critical point (0, 0) the second derivative test is insufficient, and one must use higher order tests or other tools to determine the behavior of the function at this point.

  3. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    After establishing the critical points of a function, the second-derivative test uses the value of the second derivative at those points to determine whether such points are a local maximum or a local minimum. [1] If the function f is twice-differentiable at a critical point x (i.e. a point where f ′ (x) = 0), then:

  4. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    The second-derivative test for functions of one and two variables is simpler than the general case. In one variable, the Hessian contains exactly one second derivative; if it is positive, then x {\displaystyle x} is a local minimum, and if it is negative, then x {\displaystyle x} is a local maximum; if it is zero, then the test is inconclusive.

  5. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.

  6. Multivariable calculus - Wikipedia

    en.wikipedia.org/wiki/Multivariable_calculus

    The partial derivative generalizes the notion of the derivative to higher dimensions. A partial derivative of a multivariable function is a derivative with respect to one variable with all other variables held constant. [1]: 26ff A partial derivative may be thought of as the directional derivative of the function along a coordinate axis.

  7. Symmetry of second derivatives - Wikipedia

    en.wikipedia.org/wiki/Symmetry_of_second_derivatives

    When viewed as a distribution the second partial derivative's values can be changed at an arbitrary set of points as long as this has Lebesgue measure 0. Since in the example the Hessian is symmetric everywhere except (0, 0), there is no contradiction with the fact that the Hessian, viewed as a Schwartz distribution, is symmetric.

  8. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    In these limits, the infinitesimal change is often denoted or .If () is differentiable at , (+) = ′ ().This is the definition of the derivative.All differentiation rules can also be reframed as rules involving limits.

  9. Implicit function theorem - Wikipedia

    en.wikipedia.org/wiki/Implicit_function_theorem

    The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).