enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hexagon - Wikipedia

    en.wikipedia.org/wiki/Hexagon

    A regular hexagon has Schläfli symbol {6}. A regular hexagon is a part of the regular hexagonal tiling, {6,3}, with three hexagonal faces around each vertex. A regular hexagon can also be created as a truncated equilateral triangle, with Schläfli symbol t{3}.

  3. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    Some regular polygons are easy to construct with compass and straightedge; other regular polygons are not constructible at all. The ancient Greek mathematicians knew how to construct a regular polygon with 3, 4, or 5 sides, [20]: p. xi and they knew how to construct a regular polygon with double the number of sides of a given regular polygon.

  4. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    This can be seen from the area formula πr 2 and the circumference formula 2πr. The area of a regular polygon is half its perimeter times the apothem (where the apothem is the distance from the center to the nearest point on any side).

  5. Polygon - Wikipedia

    en.wikipedia.org/wiki/Polygon

    In either case, the area formula is correct in absolute value. This is commonly called the shoelace formula or surveyor's formula. [6] The area A of a simple polygon can also be computed if the lengths of the sides, a 1, a 2, ..., a n and the exterior angles, θ 1, θ 2, ..., θ n are known, from:

  6. Apothem - Wikipedia

    en.wikipedia.org/wiki/Apothem

    Apothem of a hexagon Graphs of side, s; apothem, a; and area, A of regular polygons of n sides and circumradius 1, with the base, b of a rectangle with the same area. The green line shows the case n = 6. The apothem (sometimes abbreviated as apo [1]) of a regular polygon is a line

  7. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    The area formula can also be applied to self-overlapping polygons since the meaning of area is still clear even though self-overlapping polygons are not generally simple. [6] Furthermore, a self-overlapping polygon can have multiple "interpretations" but the Shoelace formula can be used to show that the polygon's area is the same regardless of ...

  8. Pick's theorem - Wikipedia

    en.wikipedia.org/wiki/Pick's_theorem

    Farey sunburst of order 6, with 1 interior (red) and 96 boundary (green) points giving an area of 1 + ⁠ 96 / 2 ⁠ − 1 = 48 [1]. In geometry, Pick's theorem provides a formula for the area of a simple polygon with integer vertex coordinates, in terms of the number of integer points within it and on its boundary.

  9. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    The area of a regular polygon is half its perimeter multiplied by the distance from its center to its sides, and because the sequence tends to a circle, the corresponding formula–that the area is half the circumference times the radius–namely, A = ⁠ 1 / 2 ⁠ × 2πr × r, holds for a circle.