enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Band gap - Wikipedia

    en.wikipedia.org/wiki/Band_gap

    In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to the energy difference (often expressed in electronvolts ) between the top of the valence band and the ...

  3. Electronic band structure - Wikipedia

    en.wikipedia.org/wiki/Electronic_band_structure

    In solid-state physics, the electronic band structure (or simply band structure) of a solid describes the range of energy levels that electrons may have within it, as well as the ranges of energy that they may not have (called band gaps or forbidden bands). Band theory derives these bands and band gaps by examining the allowed quantum ...

  4. Direct and indirect band gaps - Wikipedia

    en.wikipedia.org/wiki/Direct_and_indirect_band_gaps

    In semiconductors, the band gap of a semiconductor can be of two basic types, a direct band gap or an indirect band gap. The minimal-energy state in the conduction band and the maximal-energy state in the valence band are each characterized by a certain crystal momentum (k-vector) in the Brillouin zone. If the k-vectors are different, the ...

  5. Energy gap - Wikipedia

    en.wikipedia.org/wiki/Energy_gap

    For superconductors the energy gap is a region of suppressed density of states around the Fermi energy, with the size of the energy gap much smaller than the energy scale of the band structure. The superconducting energy gap is a key aspect in the theoretical description of superconductivity and thus features prominently in BCS theory. Here ...

  6. Metal-induced gap states - Wikipedia

    en.wikipedia.org/wiki/Metal-induced_gap_states

    Since the mid-gap states do exist within some depth of the semiconductor, they must be a mixture (a Fourier series) of valence and conduction band states from the bulk. The resulting positions of these states, as calculated by C. Tejedor, F. Flores and E. Louis , [ 3 ] and J. Tersoff , [ 4 ] [ 5 ] must be closer to either the valence- or ...

  7. Tauc plot - Wikipedia

    en.wikipedia.org/wiki/Tauc_plot

    Typically, a Tauc plot shows the photon energy E (= hν) on the abscissa (x-coordinate) and the quantity (αE) 1/2 on the ordinate (y-coordinate), where α is the absorption coefficient of the material. Thus, extrapolating this linear region to the abscissa yields the energy of the optical bandgap of the amorphous material.

  8. Surface states - Wikipedia

    en.wikipedia.org/wiki/Surface_states

    In semiconductors though, the associated eigenenergies have to belong to one of the allowed energy bands. The second type of solution exists in forbidden energy gap of semiconductors as well as in local gaps of the projected band structure of metals. It can be shown that the energies of these states all lie within the band gap.

  9. Band offset - Wikipedia

    en.wikipedia.org/wiki/Band_offset

    The band gap difference ΔEg = Eg(A) - Eg(B) is distributed between the two discontinuities,ΔEv, and ΔEc$. In alignments, it is generally the case that the conduction band which has the higher energy minimum will bend upward, whilst the valence band which has the lower energy maximum will bend upward.