Search results
Results from the WOW.Com Content Network
The hypothesis to be tested is if D is within the acceptable range of accuracy. Let L = the lower limit for accuracy and U = upper limit for accuracy. Then H 0 L ≤ D ≤ U. versus H 1 D < L or D > U. is to be tested. The operating characteristic (OC) curve is the probability that the null hypothesis is accepted when it is true.
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Accuracy is also used as a statistical measure of how well a binary classification test correctly identifies or excludes a condition. That is, the accuracy is the proportion of correct predictions (both true positives and true negatives) among the total number of cases examined. [10] As such, it compares estimates of pre- and post-test probability.
Verification is intended to check that a product, service, or system meets a set of design specifications. [6] [7] In the development phase, verification procedures involve performing special tests to model or simulate a portion, or the entirety, of a product, service, or system, then performing a review or analysis of the modeling results.
The definition of M&S validation focuses on the accuracy with which the M&S represents the real-world intended use(s). Determining the degree of M&S accuracy is required because all M&S are approximations of reality, and it is usually critical to determine if the degree of approximation is acceptable for the intended use(s).
Data validation is intended to provide certain well-defined guarantees for fitness and consistency of data in an application or automated system. Data validation rules can be defined and designed using various methodologies, and be deployed in various contexts. [1]
The accuracy of a flight simulator's response to control inputs can be evaluated by having an experienced pilot fly the simulator through a range of maneuvers. [1] Analyzing the accuracy of a poker bot simulator's response to user input to verify that the A.I. is reacting in a logical manner. [citation needed]
Cross validation is a method of model validation that iteratively refits the model, each time leaving out just a small sample and comparing whether the samples left out are predicted by the model: there are many kinds of cross validation. Predictive simulation is used to compare simulated data to actual data.