enow.com Web Search

  1. Ads

    related to: drag examples physics problems worksheet pdf
  2. education.com has been visited by 100K+ users in the past month

    Education.com is great and resourceful - MrsChettyLife

Search results

  1. Results from the WOW.Com Content Network
  2. Drag (physics) - Wikipedia

    en.wikipedia.org/wiki/Drag_(physics)

    In supersonic flow regimes, wave drag is commonly separated into two components, supersonic lift-dependent wave drag and supersonic volume-dependent wave drag. The closed form solution for the minimum wave drag of a body of revolution with a fixed length was found by Sears and Haack, and is known as the Sears-Haack Distribution .

  3. Coulomb drag - Wikipedia

    en.wikipedia.org/wiki/Coulomb_drag

    The phenomenon considers two spatially isolated layers. In between the two layers, there can be vacuum or an insulator. When an electric direct current is driven in the active layer, it drags carriers in the passive layer due to Coulomb interaction, this charge imbalance leads to a drag voltage V D induced in the passive layer.

  4. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    is the drag coefficient – a dimensionless coefficient related to the object's geometry and taking into account both skin friction and form drag. If the fluid is a liquid, c d {\displaystyle c_{\rm {d}}} depends on the Reynolds number ; if the fluid is a gas, c d {\displaystyle c_{\rm {d}}} depends on both the Reynolds number and the Mach number .

  5. Category:Drag (physics) - Wikipedia

    en.wikipedia.org/wiki/Category:Drag_(physics)

    Download as PDF; Printable version; Help Subcategories. This category has only the following subcategory. P. Parachutes‎ (2 C, 3 ... Pages in category "Drag (physics)"

  6. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  7. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    Creeping flow past a falling sphere in a fluid (e.g., a droplet of fog falling through the air): streamlines, drag force F d and force by gravity F g. At terminal (or settling) velocity , the excess force F e due to the difference between the weight and buoyancy of the sphere (both caused by gravity [ 7 ] ) is given by:

  8. Free body diagram - Wikipedia

    en.wikipedia.org/wiki/Free_body_diagram

    (It may be necessary to calculate the stress to which it is subjected, for example.) On the right, the red cylinder has become the free body. In figure 2, the interest has shifted to just the left half of the red cylinder and so now it is the free body on the right. The example illustrates the context sensitivity of the term "free body".

  9. Epstein drag - Wikipedia

    en.wikipedia.org/wiki/Epstein_drag

    In fluid dynamics, Epstein drag is a theoretical result, for the drag force exerted on spheres in high Knudsen number flow (i.e., rarefied gas flow). [1] This may apply, for example, to sub-micron droplets in air, or to larger spherical objects moving in gases more rarefied than air at standard temperature and pressure.

  1. Ads

    related to: drag examples physics problems worksheet pdf