Search results
Results from the WOW.Com Content Network
Prefix sums are trivial to compute in sequential models of computation, by using the formula y i = y i − 1 + x i to compute each output value in sequence order. However, despite their ease of computation, prefix sums are a useful primitive in certain algorithms such as counting sort, [1] [2] and they form the basis of the scan higher-order function in functional programming languages.
A Fenwick tree or binary indexed tree (BIT) is a data structure that stores an array of values and can efficiently compute prefix sums of the values and update the values. It also supports an efficient rank-search operation for finding the longest prefix whose sum is no more than a specified value.
Range minimum query reduced to the lowest common ancestor problem.. Given an array A[1 … n] of n objects taken from a totally ordered set, such as integers, the range minimum query RMQ A (l,r) =arg min A[k] (with 1 ≤ l ≤ k ≤ r ≤ n) returns the position of the minimal element in the specified sub-array A[l …
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
Given a function that accepts an array, a range query (,) on an array = [,..,] takes two indices and and returns the result of when applied to the subarray [, …,].For example, for a function that returns the sum of all values in an array, the range query (,) returns the sum of all values in the range [,].
This method is naturally extended to continuous domains. [2]The method can be also extended to high-dimensional images. [6] If the corners of the rectangle are with in {,}, then the sum of image values contained in the rectangle are computed with the formula {,} ‖ ‖ where () is the integral image at and the image dimension.
The array L stores the length of the longest common suffix of the prefixes S[1..i] and T[1..j] which end at position i and j, respectively. The variable z is used to hold the length of the longest common substring found so far. The set ret is used to hold the set of strings which are of length z.
The prefix S n of S is defined as the first n characters of S. [5] For example, the prefixes of S = (AGCA) are S 0 = S 1 = (A) S 2 = (AG) S 3 = (AGC) S 4 = (AGCA). Let LCS(X, Y) be a function that computes a longest subsequence common to X and Y. Such a function has two interesting properties.