enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chemical bonding of water - Wikipedia

    en.wikipedia.org/wiki/Chemical_bonding_of_water

    2 O is sp 3 hybridized in which the 2s atomic orbital and the three 2p orbitals of oxygen are hybridized to form four new hybridized orbitals which then participate in bonding by overlapping with the hydrogen 1s orbitals. As such, the predicted shape and bond angle of sp 3 hybridization is tetrahedral and 109.5°. This is in open agreement with ...

  3. Orbital hybridisation - Wikipedia

    en.wikipedia.org/wiki/Orbital_hybridisation

    The π bond between the carbon atoms perpendicular to the molecular plane is formed by 2p–2p overlap. Each carbon atom forms covalent C–H bonds with two hydrogens by s–sp 2 overlap, all with 120° bond angles. The hydrogen–carbon bonds are all of equal strength and length, in agreement with experimental data.

  4. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    Yet, clearly the bond angles between all these molecules deviate from their ideal geometries in different ways. Bent's rule can help elucidate these apparent discrepancies. [5] [20] [21] Electronegative substituents will have more p character. [5] [20] Bond angle has a proportional relationship with s character and an inverse relationship with ...

  5. Orbital overlap - Wikipedia

    en.wikipedia.org/wiki/Orbital_overlap

    In chemical bonds, an orbital overlap is the concentration of orbitals on adjacent atoms in the same regions of space. Orbital overlap can lead to bond formation. Linus Pauling explained the importance of orbital overlap in the molecular bond angles observed through experimentation; it is the basis for orbital hybridization.

  6. Trigonal pyramidal molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_pyramidal...

    This would result in the geometry of a regular tetrahedron with each bond angle equal to arccos(− ⁠ 1 / 3 ⁠) ≈ 109.5°. However, the three hydrogen atoms are repelled by the electron lone pair in a way that the geometry is distorted to a trigonal pyramid (regular 3-sided pyramid) with bond angles of 107°.

  7. Dangling bond - Wikipedia

    en.wikipedia.org/wiki/Dangling_bond

    The dangling bonds are depicted as blue-red hybrid sp 3 orbitals. In chemistry, a dangling bond is an unsatisfied valence on an immobilized atom. An atom with a dangling bond is also referred to as an immobilized free radical or an immobilized radical, a reference to its structural and chemical similarity to a free radical.

  8. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    The smallest molecule, hydrogen gas exists as dihydrogen (H-H) with a single covalent bond between two hydrogen atoms. As each hydrogen atom has a single 1s atomic orbital for its electron, the bond forms by overlap of these two atomic orbitals. In the figure the two atomic orbitals are depicted on the left and on the right.

  9. Carbon–carbon bond - Wikipedia

    en.wikipedia.org/wiki/Carbon–carbon_bond

    A carbon–carbon bond is a covalent bond between two carbon atoms. [1] The most common form is the single bond : a bond composed of two electrons , one from each of the two atoms. The carbon–carbon single bond is a sigma bond and is formed between one hybridized orbital from each of the carbon atoms.