enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    In this case, the three-acceleration vector is perpendicular to the three-velocity vector, = and the square of proper acceleration, expressed as a scalar invariant, the same in all reference frames, = + (), becomes the expression for circular motion, =. or, taking the positive square root and using the three-acceleration, we arrive at the ...

  3. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  4. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    Calculation of the speed difference for a uniform acceleration. Uniform or constant acceleration is a type of motion in which the velocity of an object changes by an equal amount in every equal time period. A frequently cited example of uniform acceleration is that of an object in free fall in a uniform gravitational field.

  5. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    The gravitational acceleration vector depends only on how massive the field source is and on the distance 'r' to the sample mass . It does not depend on the magnitude of the small sample mass. This model represents the "far-field" gravitational acceleration associated with a massive body.

  6. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  7. Orders of magnitude (acceleration) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude...

    Acceleration of Earth toward the sun due to sun's gravitational attraction 10 −1: 1 dm/s 2: lab 0.25 m/s 2: 0.026 g: Train acceleration for SJ X2 [citation needed] 10 0: 1 m/s 2: inertial 1.62 m/s 2: 0.1654 g: Standing on the Moon at its equator [citation needed] lab 4.3 m/s 2: 0.44 g: Car acceleration 0–100 km/h in 6.4 s with a Saab 9-5 ...

  8. Proper acceleration - Wikipedia

    en.wikipedia.org/wiki/Proper_acceleration

    The "acceleration of gravity" (involved in the "force of gravity") never contributes to proper acceleration in any circumstances, and thus the proper acceleration felt by observers standing on the ground is due to the mechanical force from the ground, not due to the "force" or "acceleration" of gravity. If the ground is removed and the observer ...

  9. Proper velocity - Wikipedia

    en.wikipedia.org/wiki/Proper_velocity

    Proper acceleration at any speed is the physical acceleration experienced locally by an object. In spacetime it is a three-vector acceleration with respect to the object's instantaneously varying free-float frame. [13] Its magnitude α is the frame-invariant magnitude of that object's four-acceleration. Proper acceleration is also useful from ...