enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Variational autoencoder - Wikipedia

    en.wikipedia.org/wiki/Variational_autoencoder

    Many variational autoencoders applications and extensions have been used to adapt the architecture to other domains and improve its performance. β {\displaystyle \beta } -VAE is an implementation with a weighted Kullback–Leibler divergence term to automatically discover and interpret factorised latent representations.

  3. Variational Bayesian methods - Wikipedia

    en.wikipedia.org/wiki/Variational_Bayesian_methods

    Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning.They are typically used in complex statistical models consisting of observed variables (usually termed "data") as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as ...

  4. Reparameterization trick - Wikipedia

    en.wikipedia.org/wiki/Reparameterization_trick

    The reparameterization trick (aka "reparameterization gradient estimator") is a technique used in statistical machine learning, particularly in variational inference, variational autoencoders, and stochastic optimization.

  5. Autoencoder - Wikipedia

    en.wikipedia.org/wiki/Autoencoder

    An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning).An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation.

  6. Bayesian experimental design - Wikipedia

    en.wikipedia.org/wiki/Bayesian_experimental_design

    Another approach is to use a variational Bayes approximation of the posterior, which can often be calculated in closed form. This approach has the advantage of being computationally more efficient than Monte Carlo methods, but the disadvantage that the approximation might not be very accurate.

  7. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    Then, using PDF of each class, the class probability of a new input is estimated and Bayes’ rule is employed to allocate it to the class with the highest posterior probability. [13] It was derived from the Bayesian network [ 14 ] and a statistical algorithm called Kernel Fisher discriminant analysis . [ 15 ]

  8. Evidence lower bound - Wikipedia

    en.wikipedia.org/wiki/Evidence_lower_bound

    This is a problem in the calculus of variations, thus it is called the variational method. Since there are not many explicitly parametrized distribution families (all the classical distribution families, such as the normal distribution, the Gumbel distribution, etc, are far too simplistic to model the true distribution), we consider implicitly ...

  9. Bernstein–von Mises theorem - Wikipedia

    en.wikipedia.org/wiki/Bernstein–von_Mises_theorem

    In Bayesian inference, the Bernstein–von Mises theorem provides the basis for using Bayesian credible sets for confidence statements in parametric models.It states that under some conditions, a posterior distribution converges in total variation distance to a multivariate normal distribution centered at the maximum likelihood estimator ^ with covariance matrix given by (), where is the true ...