enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lewis structure - Wikipedia

    en.wikipedia.org/wiki/Lewis_structure

    For instance, Lewis structures do not offer an explanation for why cyclic C 6 H 6 (benzene) experiences special stabilization beyond normal delocalization effects, while C 4 H 4 (cyclobutadiene) actually experiences a special destabilization. [citation needed] Molecular orbital theory provides the most straightforward explanation for these ...

  3. Molecular orbital theory - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_theory

    Molecular orbital theory was seen as a competitor to valence bond theory in the 1930s, before it was realized that the two methods are closely related and that when extended they become equivalent. Molecular orbital theory is used to interpret ultraviolet–visible spectroscopy (UV–VIS). Changes to the electronic structure of molecules can be ...

  4. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    The p-orbitals oriented in the z-direction (p z) can overlap end-on forming a bonding (symmetrical) σ orbital and an antibonding σ* molecular orbital. In contrast to the sigma 1s MO's, the σ 2p has some non-bonding electron density at either side of the nuclei and the σ* 2p has some electron density between the nuclei.

  5. Electron pair - Wikipedia

    en.wikipedia.org/wiki/Electron_pair

    In chemistry, an electron pair or Lewis pair consists of two electrons that occupy the same molecular orbital but have opposite spins. Gilbert N. Lewis introduced the concepts of both the electron pair and the covalent bond in a landmark paper he published in 1916. [1] [2]

  6. Linnett double-quartet theory - Wikipedia

    en.wikipedia.org/wiki/Linnett_Double-Quartet_Theory

    A key trait of LDQ theory that is shared with Lewis theory is the importance of using formal charges to determine the most important electronic structure. [19] LDQ theory produces the spatial distributions of the electrons by considering the two fundamental physical properties of said electrons:

  7. Chemical bonding of water - Wikipedia

    en.wikipedia.org/wiki/Chemical_bonding_of_water

    Molecular Orbital Theory vs. Valence Bond Theory has been a topic of debate since the early to mid 1900s. Despite continued heated debate on which model more accurately depict the true bonding scheme of molecules, scientists now view MO and VB theories as complementary and teammates.

  8. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    The symmetry properties of molecular orbitals means that delocalization is an inherent feature of molecular orbital theory and makes it fundamentally different from (and complementary to) valence bond theory, in which bonds are viewed as localized electron pairs, with allowance for resonance to account for delocalization.

  9. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    According to VSEPR theory, diethyl ether, methanol, water and oxygen difluoride should all have a bond angle of 109.5 o. [12] Using VSEPR theory, all these molecules should have the same bond angle because they have the same "bent" shape. [12] Yet, clearly the bond angles between all these molecules deviate from their ideal geometries in ...