enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Octal - Wikipedia

    en.wikipedia.org/wiki/Octal

    On such systems three octal digits per byte would be required, with the most significant octal digit representing two binary digits (plus one bit of the next significant byte, if any). Octal representation of a 16-bit word requires 6 digits, but the most significant octal digit represents (quite inelegantly) only one bit (0 or 1).

  3. Positional notation - Wikipedia

    en.wikipedia.org/wiki/Positional_notation

    So binary numbers are "base-2"; octal numbers are "base-8"; decimal numbers are "base-10"; and so on. ... 10 1 0 11 160 ----- 10 161 Repeat until the final addition ...

  4. List of numeral systems - Wikipedia

    en.wikipedia.org/wiki/List_of_numeral_systems

    This is the minimum number of characters needed to encode a 32 bit number into 5 printable characters in a process similar to MIME-64 encoding, since 85 5 is only slightly bigger than 2 32. Such method is 6.7% more efficient than MIME-64 which encodes a 24 bit number into 4 printable characters. 89

  5. Numeral system - Wikipedia

    en.wikipedia.org/wiki/Numeral_system

    A numeral system is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner. The same sequence of symbols may represent different numbers in different numeral systems.

  6. Binary number - Wikipedia

    en.wikipedia.org/wiki/Binary_number

    Binary is also easily converted to the octal numeral system, since octal uses a radix of 8, which is a power of two (namely, 2 3, so it takes exactly three binary digits to represent an octal digit). The correspondence between octal and binary numerals is the same as for the first eight digits of hexadecimal in the table above.

  7. Radix - Wikipedia

    en.wikipedia.org/wiki/Radix

    The octal and hexadecimal systems are often used in computing because of their ease as shorthand for binary. Every hexadecimal digit corresponds to a sequence of four binary digits, since sixteen is the fourth power of two; for example, hexadecimal 78 16 is binary 111 1000 2 .

  8. Method of complements - Wikipedia

    en.wikipedia.org/wiki/Method_of_complements

    The smaller numbers, for use when subtracting, are the nines' complement of the larger numbers, which are used when adding. In mathematics and computing , the method of complements is a technique to encode a symmetric range of positive and negative integers in a way that they can use the same algorithm (or mechanism ) for addition throughout ...

  9. Talk:Octal - Wikipedia

    en.wikipedia.org/wiki/Talk:Octal

    In octal, it would be written 11. Thus, single-digit numbers' primality is easily found just by checking evenness. 3, 5, and 7 would be easily seen as prime, while 4 and 6 would be obviously nonprime. Easy divisibility by 7 and 9: Take a multiple-digit number in octal, such as 527 (decimal 343). Take the sum of the digits (16 octal, 14 decimal ...