Search results
Results from the WOW.Com Content Network
is the stoichiometry parameter, ... Constant level of this surface is identified from the equation (,) = ... The local equivalence ratio is an important quantity for ...
Air–fuel equivalence ratio, λ (lambda), is the ratio of actual AFR to stoichiometry for a given mixture. λ = 1.0 is at stoichiometry, rich mixtures λ < 1.0, and lean mixtures λ > 1.0. There is a direct relationship between λ and AFR. To calculate AFR from a given λ, multiply the measured λ by the stoichiometric AFR for that fuel.
Reaction stoichiometry describes the 2:1:2 ratio of hydrogen, oxygen, and water molecules in the above equation. The molar ratio allows for conversion between moles of one substance and moles of another. For example, in the reaction 2 CH 3 OH + 3 O 2 → 2 CO 2 + 4 H 2 O. the amount of water that will be produced by the combustion of 0.27 moles ...
The equivalence point, or stoichiometric point, of a chemical reaction is the point at which chemically equivalent quantities of reactants have been mixed. For an acid-base reaction the equivalence point is where the moles of acid and the moles of base would neutralize each other according to the chemical reaction.
This ratio of 1.19 obeys the law because it is a simple fraction (1/3) of 3.58. (This is because it corresponds to the formula ICl 3, which is one known compound of iodine and chlorine.) Similarly, hydrogen, carbon, and oxygen follow the law of reciprocal proportions. The acceptance of the law allowed tables of element equivalent weights to be ...
r is the stoichiometric ratio of reactants, the excess reactant is conventionally the denominator so that r < 1. If neither monomer is in excess, then r = 1 and the equation reduces to the equimolar case above. The effect of the excess reactant is to reduce the degree of polymerization for a given value of p.
A ratio of 1 corresponds to the stoichiometric ratio Constant volume flame temperature of a number of fuels, with air. If we make the assumption that combustion goes to completion (i.e. forming only CO 2 and H 2 O), we can calculate the adiabatic flame temperature by hand either at stoichiometric conditions or lean of stoichiometry (excess air ...
Conversion and its related terms yield and selectivity are important terms in chemical reaction engineering.They are described as ratios of how much of a reactant has reacted (X — conversion, normally between zero and one), how much of a desired product was formed (Y — yield, normally also between zero and one) and how much desired product was formed in ratio to the undesired product(s) (S ...