Search results
Results from the WOW.Com Content Network
The logarithm base 10 is called the decimal or common logarithm and is commonly used in science and engineering. The natural logarithm has the number e ≈ 2.718 as its base; its use is widespread in mathematics and physics because of its very simple derivative. The binary logarithm uses base 2 and is frequently used in computer science.
He then called the logarithm, with this number as base, the natural logarithm. As noted by Howard Eves, "One of the anomalies in the history of mathematics is the fact that logarithms were discovered before exponents were in use." [16] Carl B. Boyer wrote, "Euler was among the first to treat logarithms as exponents, in the manner now so ...
A graph of the common logarithm of numbers from 0.1 to 100. In mathematics, the common logarithm is the logarithm with base 10. [1] It is also known as the decadic logarithm and as the decimal logarithm, named after its base, or Briggsian logarithm, after Henry Briggs, an English mathematician who pioneered its use, as well as standard logarithm.
In mathematics, the binary logarithm of a number n is often written as log 2 n. [10] However, several other notations for this function have been used or proposed, especially in application areas. Some authors write the binary logarithm as lg n, [11] [12] the notation listed in The Chicago Manual of Style. [13]
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x.
A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. The choice of unit generally indicates the type of quantity and the base of the ...
Logarithms: the inverses of exponential functions; useful to solve equations involving exponentials. Natural logarithm; Common logarithm; Binary logarithm; Power functions: raise a variable number to a fixed power; also known as Allometric functions; note: if the power is a rational number it is not strictly a transcendental function. Periodic ...
Euler frequently used the logarithmic functions as a tool in analysis problems, and discovered new ways by which they could be used. He discovered ways to express various logarithmic functions in terms of power series, and successfully defined logarithms for complex and negative numbers, thus greatly expanding the scope where logarithms could ...