Search results
Results from the WOW.Com Content Network
Common examples of array slicing are extracting a substring from a string of characters, the "ell" in "hello", extracting a row or column from a two-dimensional array, or extracting a vector from a matrix. Depending on the programming language, an array slice can be made out of non-consecutive elements.
The NLEVP collection of nonlinear eigenvalue problems is a MATLAB package containing many nonlinear eigenvalue problems with various properties. [ 6 ] The FEAST eigenvalue solver is a software package for standard eigenvalue problems as well as nonlinear eigenvalue problems, designed from density-matrix representation in quantum mechanics ...
MATLAB (an abbreviation of "MATrix LABoratory" [22]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms , creation of user interfaces , and interfacing with programs written in other languages.
Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...
The unmixing matrix that maximizes equation is known as the MLE of the optimal unmixing matrix. It is common practice to use the log likelihood , because this is easier to evaluate. As the logarithm is a monotonic function, the W {\displaystyle \mathbf {W} } that maximizes the function L ( W ) {\displaystyle \mathbf {L(W)} } also maximizes its ...
For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal.
The essential matrix can be seen as a precursor to the fundamental matrix, .Both matrices can be used for establishing constraints between matching image points, but the fundamental matrix can only be used in relation to calibrated cameras since the inner camera parameters (matrices and ′) must be known in order to achieve the normalization.
For finding all the roots, arguably the most reliable method is the Francis QR algorithm computing the eigenvalues of the companion matrix corresponding to the polynomial, implemented as the standard method [1] in MATLAB. The oldest method of finding all roots is to start by finding a single root.