Search results
Results from the WOW.Com Content Network
The user can search for elements in an associative array, and delete elements from the array. The following shows how multi-dimensional associative arrays can be simulated in standard AWK using concatenation and the built-in string-separator variable SUBSEP:
Another operation that has been implemented as a variadic function in many languages is output formatting. The C function printf and the Common Lisp function format are two such examples. Both take one argument that specifies the formatting of the output, and any number of arguments that provide the values to be formatted.
String functions are used in computer programming languages to manipulate a string or query information about a string (some do both). Most programming languages that have a string datatype will have some string functions although there may be other low-level ways within each language to handle strings directly.
In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert' operations. The dictionary problem is the classic problem of designing efficient data structures that implement associative arrays. [2] The two major solutions to the dictionary problem are hash tables and search trees.
For example, one could define a dictionary having a string "toast" mapped to the integer 42 or vice versa. The keys in a dictionary must be of an immutable Python type, such as an integer or a string, because under the hood they are implemented via a hash function. This makes for much faster lookup times, but requires keys not change.
Format is a function in Common Lisp that can produce formatted text using a format string similar to the print format string.It provides more functionality than print, allowing the user to output numbers in various formats (including, for instance: hex, binary, octal, roman numerals, and English), apply certain format specifiers only under certain conditions, iterate over data structures ...
Eval is understood to be the step of converting a quoted string into a callable function and its arguments, whereas apply is the actual call of the function with a given set of arguments. The distinction is particularly noticeable in functional languages , and languages based on lambda calculus , such as LISP and Scheme .
In computer science, a literal is a textual representation (notation) of a value as it is written in source code. [1] [2] Almost all programming languages have notations for atomic values such as integers, floating-point numbers, and strings, and usually for Booleans and characters; some also have notations for elements of enumerated types and compound values such as arrays, records, and objects.