enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heun's method - Wikipedia

    en.wikipedia.org/wiki/Heun's_method

    In mathematics and computational science, Heun's method may refer to the improved [1] or modified Euler's method (that is, the explicit trapezoidal rule [2]), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value.

  3. Midpoint method - Wikipedia

    en.wikipedia.org/wiki/Midpoint_method

    The explicit midpoint method is sometimes also known as the modified Euler method, [1] the implicit method is the most simple collocation method, and, applied to Hamiltonian dynamics, a symplectic integrator. Note that the modified Euler method can refer to Heun's method, [2] for further clarity see List of Runge–Kutta methods.

  4. List of Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/List_of_Runge–Kutta_methods

    Download as PDF; Printable version; ... improved Euler's method, or modified Euler's method: ... The first-order method is equivalent to the backward Euler method.

  5. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    The backward Euler method is an implicit method, meaning that the formula for the backward Euler method has + on both sides, so when applying the backward Euler method we have to solve an equation. This makes the implementation more costly.

  6. Semi-implicit Euler method - Wikipedia

    en.wikipedia.org/wiki/Semi-implicit_Euler_method

    However, the semi-implicit Euler method is a symplectic integrator, unlike the standard method. As a consequence, the semi-implicit Euler method almost conserves the energy (when the Hamiltonian is time-independent). Often, the energy increases steadily when the standard Euler method is applied, making it far less accurate.

  7. Predictor–corrector method - Wikipedia

    en.wikipedia.org/wiki/Predictor–corrector_method

    A simple predictor–corrector method (known as Heun's method) can be constructed from the Euler method (an explicit method) and the trapezoidal rule (an implicit method). Consider the differential equation ′ = (,), =, and denote the step size by .

  8. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    This is the Euler method (or forward Euler method, in contrast with the backward Euler method, to be described below). The method is named after Leonhard Euler who described it in 1768. The Euler method is an example of an explicit method. This means that the new value y n+1 is defined in terms of things that are already known, like y n.

  9. Runge–Kutta method (SDE) - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_method_(SDE)

    A newer Runge—Kutta scheme also of strong order 1 straightforwardly reduces to the improved Euler scheme for deterministic ODEs. [2] Consider the vector stochastic process () that satisfies the general Ito SDE = (,) + (,), where drift and volatility are sufficiently smooth functions of their arguments.