Search results
Results from the WOW.Com Content Network
An example of nucleophilic substitution is the hydrolysis of an alkyl bromide, R-Br under basic conditions, where the attacking nucleophile is hydroxyl (OH −) and the leaving group is bromide (Br −). + + Nucleophilic substitution reactions are common in organic chemistry.
This reaction is similar to nucleophilic aliphatic substitution where the reactant is a nucleophile rather than an electrophile. The four possible electrophilic aliphatic substitution reaction mechanisms are S E 1, S E 2(front), S E 2(back) and S E i (Substitution Electrophilic), which are also similar to the nucleophile counterparts S N 1 and ...
Substitution reactions in organic chemistry are classified either as electrophilic or nucleophilic depending upon the reagent involved, whether a reactive intermediate involved in the reaction is a carbocation, a carbanion or a free radical, and whether the substrate is aliphatic or aromatic. Detailed understanding of a reaction type helps to ...
Aromatic rings are usually nucleophilic, but some aromatic compounds do undergo nucleophilic substitution. Just as normally nucleophilic alkenes can be made to undergo conjugate substitution if they carry electron-withdrawing substituents, so normally nucleophilic aromatic rings also become electrophilic if they have the right substituents .
Nitrenes lack a full octet of electrons are thus highly electrophilic; nitrenoids exhibit analogous behavior and are often good substrates for electrophilic amination reactions. Nitrenoids can be generated from O-alkylhydroxylamines containing an N−H bond via deprotonation or from O-alkyloximes via nucleophilic addition. These intermediates ...
The unimolecular nucleophilic substitution (S N 1) reaction is a substitution reaction in organic chemistry. The Hughes-Ingold symbol of the mechanism expresses two properties—"S N " stands for " nucleophilic substitution ", and the "1" says that the rate-determining step is unimolecular .
Electrophilic aromatic substitution (S E Ar) is an organic reaction in which an atom that is attached to an aromatic system (usually hydrogen) is replaced by an electrophile. Some of the most important electrophilic aromatic substitutions are aromatic nitration , aromatic halogenation , aromatic sulfonation , alkylation Friedel–Crafts ...
Allylic shifts become the dominant reaction pathway when there is substantial resistance to a normal (non-allylic) substitution. For nucleophilic substitution, such resistance is known when there is substantial steric hindrance at or around the leaving group, or if there is a geminal substituent destabilizing an accumulation of positive charge.