Search results
Results from the WOW.Com Content Network
In game theory, a solution concept is a formal rule for predicting how a game will be played. These predictions are called "solutions", and describe which strategies will be adopted by players and, therefore, the result of the game. The most commonly used solution concepts are equilibrium concepts, most famously Nash equilibrium.
Mean field game theory is the study of strategic decision making in very large populations of small interacting agents. This class of problems was considered in the economics literature by Boyan Jovanovic and Robert W. Rosenthal, in the engineering literature by Peter E. Caines, and by mathematicians Pierre-Louis Lions and Jean-Michel Lasry.
In game theory, an information set represents all possible points (or decision nodes) in a game that a given player might be at during their turn, based on their current knowledge and observations. These nodes are indistinguishable to the player due to incomplete information about previous actions or the state of the game .
Constant sum: A game is a constant sum game if the sum of the payoffs to every player are the same for every single set of strategies. In these games, one player gains if and only if another player loses. A constant sum game can be converted into a zero sum game by subtracting a fixed value from all payoffs, leaving their relative order unchanged.
Determined game (or Strictly determined game) In game theory, a strictly determined game is a two-player zero-sum game that has at least one Nash equilibrium with both players using pure strategies. [2] [3] Dictator A player is a strong dictator if he can guarantee any outcome regardless of the other players.
Rationalizability is a solution concept in game theory. It is the most permissive possible solution concept that still requires both players to be at least somewhat rational and know the other players are also somewhat rational, i.e. that they do not play dominated strategies .
Game theorists commonly study how the outcome of a game is determined and what factors affect it. In game theory, a strategy is a set of actions that a player can take in response to the actions of others. Each player’s strategy is based on their expectation of what the other players are likely to do, often explained in terms of probability. [2]
A Bayesian Nash Equilibrium (BNE) is a Nash equilibrium for a Bayesian game, which is derived from the ex-ante normal form game associated with the Bayesian framework. In a traditional (non-Bayesian) game, a strategy profile is a Nash equilibrium if every player's strategy is a best response to the other players' strategies. In this situation ...