Search results
Results from the WOW.Com Content Network
The sum-product conjecture informally says that one of the sum set or the product set of any set must be nearly as large as possible. It was originally conjectured by Erdős in 1974 to hold whether A is a set of integers, reals, or complex numbers. [3] More precisely, it proposes that, for any set A ⊂ ℂ, one has
The weighted product model (WPM) is a popular multi-criteria decision analysis (MCDA) / multi-criteria decision making (MCDM) method. It is similar to the weighted sum model (WSM) in that it produces a simple score, but has the very important advantage of overcoming the issue of 'adding apples and pears' i.e. adding together quantities measured in different units.
In decision theory, the weighted sum model (WSM), [1] [2] also called weighted linear combination (WLC) [3] or simple additive weighting (SAW), [4] is the best known and simplest multi-criteria decision analysis (MCDA) / multi-criteria decision making method for evaluating a number of alternatives in terms of a number of decision criteria.
Canonical normal form is a standardized representation of mathematical expressions, used in computer science and logic.
The Nash–Sutcliffe coefficient masks important behaviors that if re-cast can aid in the interpretation of the different sources of model behavior in terms of bias, random, and other components. [11]
Example of a spreadsheet holding data about a group of audio tracks. A spreadsheet is a computer application for computation, organization, analysis and storage of data in tabular form. [1] [2] [3] Spreadsheets were developed as computerized analogs of paper accounting worksheets. [4] The program operates on data entered in cells of a table.
The elements of the set {A, B} can combine with the elements of the set {1, 2, 3} in six different ways. In combinatorics, the rule of product or multiplication principle is a basic counting principle (a.k.a. the fundamental principle of counting).
In mathematics, for a sequence of complex numbers a 1, a 2, a 3, ... the infinite product = = is defined to be the limit of the partial products a 1 a 2...a n as n increases without bound.