enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    Instance normalization (InstanceNorm), or contrast normalization, is a technique first developed for neural style transfer, and is also only used for CNNs. [26] It can be understood as the LayerNorm for CNN applied once per channel, or equivalently, as group normalization where each group consists of a single channel:

  3. Batch normalization - Wikipedia

    en.wikipedia.org/wiki/Batch_normalization

    In a neural network, batch normalization is achieved through a normalization step that fixes the means and variances of each layer's inputs. Ideally, the normalization would be conducted over the entire training set, but to use this step jointly with stochastic optimization methods, it is impractical to use the global information.

  4. Data preprocessing - Wikipedia

    en.wikipedia.org/wiki/Data_Preprocessing

    Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...

  5. Data cleansing - Wikipedia

    en.wikipedia.org/wiki/Data_cleansing

    Data cleansing may also involve harmonization (or normalization) of data, which is the process of bringing together data of "varying file formats, naming conventions, and columns", [2] and transforming it into one cohesive data set; a simple example is the expansion of abbreviations ("st, rd, etc." to "street, road, etcetera").

  6. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    Without normalization, the clusters were arranged along the x-axis, since it is the axis with most of variation. After normalization, the clusters are recovered as expected. In machine learning, we can handle various types of data, e.g. audio signals and pixel values for image data, and this data can include multiple dimensions. Feature ...

  7. Canonicalization - Wikipedia

    en.wikipedia.org/wiki/Canonicalization

    For instance in Unix-like systems, the string "/./" can be replaced by "/". In the C standard library , the function realpath() performs this task. Other operations performed by this function to canonicalize filenames are the handling of /.. components referring to parent directories, simplification of sequences of multiple slashes, removal of ...

  8. Data transformation (computing) - Wikipedia

    en.wikipedia.org/wiki/Data_transformation...

    Code generation is the process of generating executable code (e.g. SQL, Python, R, or other executable instructions) that will transform the data based on the desired and defined data mapping rules. [4] Typically, the data transformation technologies generate this code [5] based on the definitions or metadata defined by the developers.

  9. Flow-based generative model - Wikipedia

    en.wikipedia.org/wiki/Flow-based_generative_model

    A flow-based generative model is a generative model used in machine learning that explicitly models a probability distribution by leveraging normalizing flow, [1] [2] [3] which is a statistical method using the change-of-variable law of probabilities to transform a simple distribution into a complex one.