Search results
Results from the WOW.Com Content Network
Despite this rigid minimum-size requirement, there is not one unique choice of primitive unit cell. In fact, all cells whose borders are primitive translation vectors will be primitive unit cells. The fact that there is not a unique choice of primitive translation vectors for a given lattice leads to the multiplicity of possible primitive unit ...
Vectors and are primitive translation vectors. The honeycomb point set is a special case of the hexagonal lattice with a two-atom basis. [ 1 ] The centers of the hexagons of a honeycomb form a hexagonal lattice, and the honeycomb point set can be seen as the union of two offset hexagonal lattices.
In either case, one needs to choose the three lattice vectors a 1, a 2, and a 3 that define the unit cell (note that the conventional unit cell may be larger than the primitive cell of the Bravais lattice, as the examples below illustrate). Given these, the three primitive reciprocal lattice vectors are also determined (denoted b 1, b 2, and b 3).
The primitive translation vectors of the oblique lattice form an angle other than 90° and are of unequal lengths. Crystal classes The ... Code of Conduct;
Let ,, be primitive translation vectors (shortly called primitive vectors) of a crystal lattice, where atoms are located at lattice points described by = + + with , , and as any integers. (So x {\displaystyle \mathbf {x} } indicating each lattice point is an integer linear combination of the primitive vectors.)
The primitive rectangular lattice can also be described by a centered rhombic unit cell, while the centered rectangular lattice can also be described by a primitive rhombic unit cell. Note that the length a {\displaystyle a} in the lower row is not the same as in the upper row.
The geometrical shift which takes a crystal structure coincident with itself is termed a symmetry translation (translation) of the crystal structure. The vector which is related to this shift is called a translation vector t {\displaystyle \mathbf {t} } .
The translation vectors define the nodes of Bravais lattice. The lengths of principal axes/edges, of unit cell and angles between them are lattice constants , also called lattice parameters or cell parameters .