Search results
Results from the WOW.Com Content Network
Approximations of this are found in nature Fibonacci spiral: circular arcs connecting the opposite corners of squares in the Fibonacci tiling: approximation of the golden spiral golden spiral = special case of the logarithmic spiral Spiral of Theodorus (also known as Pythagorean spiral)
Approximations of this are found in nature. Spirals which do not fit into this scheme of the first 5 examples: A Cornu spiral has two asymptotic points. The spiral of Theodorus is a polygon. The Fibonacci Spiral consists of a sequence of circle arcs. The involute of a circle looks like an Archimedean, but is not: see Involute#Examples.
A logarithmic spiral, equiangular spiral, or growth spiral is a self-similar spiral curve that often appears in nature. The first to describe a logarithmic spiral was Albrecht Dürer (1525) who called it an "eternal line" ("ewige Linie").
For example, in the nautilus, a cephalopod mollusc, each chamber of its shell is an approximate copy of the next one, scaled by a constant factor and arranged in a logarithmic spiral. [51] Given a modern understanding of fractals, a growth spiral can be seen as a special case of self-similarity.
A triskelion or triskeles is an ancient motif consisting either of a triple spiral exhibiting rotational symmetry or of other patterns in triplicate that emanate from a common center. The spiral design can be based on interlocking Archimedean spirals , or represent three bent human limbs.
The list is full of examples of this art style and movement that were created by artists from all around the world. So, check them out; maybe it will convince you to become a surrealism enthusiast ...
Petroglyphic in nature, the majority of such carvings are abstract in design, usually cup and ring marks, although examples of spirals or figurative depictions of weaponry are also known. Only one form of rock art in Europe, this late prehistoric tradition had connections with others along Atlantic Europe, particularly in Galicia.
Golden spirals are self-similar. The shape is infinitely repeated when magnified. In geometry, a golden spiral is a logarithmic spiral whose growth factor is φ, the golden ratio. [1] That is, a golden spiral gets wider (or further from its origin) by a factor of φ for every quarter turn it makes.