enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Concave function - Wikipedia

    en.wikipedia.org/wiki/Concave_function

    A function f is concave over a convex set if and only if the function −f is a convex function over the set. The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield.

  3. Logarithmically concave function - Wikipedia

    en.wikipedia.org/wiki/Logarithmically_concave...

    This follows from the fact that the convolution of two log-concave functions is log-concave. The product of two log-concave functions is log-concave. This means that joint densities formed by multiplying two probability densities (e.g. the normal-gamma distribution, which always has a shape parameter ≥ 1) will be log-concave.

  4. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    In the standard form it is possible to assume, without loss of generality, that the objective function f is a linear function.This is because any program with a general objective can be transformed into a program with a linear objective by adding a single variable t and a single constraint, as follows: [9]: 1.4

  5. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    Otherwise, if a feasible solution exists and if the constraint set is bounded, then the optimum value is always attained on the boundary of the constraint set, by the maximum principle for convex functions (alternatively, by the minimum principle for concave functions) since linear functions are both convex and concave. However, some problems ...

  6. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    Fractional programming studies optimization of ratios of two nonlinear functions. The special class of concave fractional programs can be transformed to a convex optimization problem. Nonlinear programming studies the general case in which the objective function or the constraints or both contain nonlinear parts. This may or may not be a convex ...

  7. List of mathematical functions - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_functions

    Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.

  8. Logarithmically concave sequence - Wikipedia

    en.wikipedia.org/wiki/Logarithmically_concave...

    In mathematics, a sequence a = (a 0, a 1, ..., a n) of nonnegative real numbers is called a logarithmically concave sequence, or a log-concave sequence for short, if a i 2 ≥ a i−1 a i+1 holds for 0 < i < n. Remark: some authors (explicitly or not) add two further conditions in the definition of log-concave sequences: a is non-negative

  9. Convex combination - Wikipedia

    en.wikipedia.org/wiki/Convex_combination

    A conical combination is a linear combination with nonnegative coefficients. When a point is to be used as the reference origin for defining displacement vectors, then is a convex combination of points ,, …, if and only if the zero displacement is a non-trivial conical combination of their respective displacement vectors relative to .