enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.

  3. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    (The axes of the graph do not use a 1:1 scale.) The derivative of a function is then simply the slope of this tangent line. [b] Even though the tangent line only touches a single point at the point of tangency, it can be approximated by a line that goes through two points. This is known as a secant line. If the two points that the secant line ...

  4. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    For this reason, the derivative is sometimes called the slope of the function f. [48]: 61–63 Here is a particular example, the derivative of the squaring function at the input 3. Let f(x) = x 2 be the squaring function. The derivative f′(x) of a curve at a point is the slope of the line tangent to that curve at that point. This slope is ...

  5. Linear function (calculus) - Wikipedia

    en.wikipedia.org/wiki/Linear_function_(calculus)

    The graph of the linear approximation is the tangent line of the graph = at the point (, ()). The derivative slope f ′ ( c ) {\displaystyle f\,'(c)} generally varies with the point c . Linear functions can be characterized as the only real functions whose derivative is constant: if f ′ ( x ) = a {\displaystyle f\,'(x)=a} for all x , then f ...

  6. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.

  7. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    A differentiable function is smooth (the function is locally well approximated as a linear function at each interior point) and does not contain any break, angle, or cusp. If x 0 is an interior point in the domain of a function f, then f is said to be differentiable at x 0 if the derivative ′ exists.

  8. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    A sigmoid function is any mathematical function whose graph has a characteristic S-shaped or sigmoid curve. A common example of a sigmoid function is the logistic function, which is defined by the formula: [1] = + = + = ().

  9. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivatives in the table above are for when the range of the inverse secant is [,] and when the range of the inverse cosecant is [,]. It is common to additionally define an inverse tangent function with two arguments , arctan ⁡ ( y , x ) {\textstyle \arctan(y,x)} .