enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital plane - Wikipedia

    en.wikipedia.org/wiki/Orbital_plane

    The orbital plane is defined in relation to a reference plane by two parameters: inclination (i) and longitude of the ascending node (Ω). By definition, the reference plane for the Solar System is usually considered to be Earth's orbital plane, which defines the ecliptic, the circular path on the celestial sphere that the Sun appears to follow ...

  3. Orbital plane of reference - Wikipedia

    en.wikipedia.org/wiki/Orbital_plane_of_reference

    The ecliptic or invariable plane for planets, asteroids, comets, etc. within the Solar System, as these bodies generally have orbits that lie close to the ecliptic. The equatorial plane of the orbited body for satellites orbiting with small semi-major axes; The local Laplace plane for satellites orbiting with intermediate-to-large semi-major axes

  4. Orbit - Wikipedia

    en.wikipedia.org/wiki/Orbit

    An animation showing a low eccentricity orbit (near-circle, in red), and a high eccentricity orbit (ellipse, in purple). In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object [1] such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such ...

  5. Solar System - Wikipedia

    en.wikipedia.org/wiki/Solar_System

    The Solar System remains in a relatively stable, slowly evolving state by following isolated, gravitationally bound orbits around the Sun. [28] Although the Solar System has been fairly stable for billions of years, it is technically chaotic, and may eventually be disrupted. There is a small chance that another star will pass through the Solar ...

  6. Astronomical coordinate systems - Wikipedia

    en.wikipedia.org/.../Astronomical_coordinate_systems

    The heliocentric ecliptic system describes the planets' orbital movement around the Sun, and centers on the barycenter of the Solar System (i.e. very close to the center of the Sun). The system is primarily used for computing the positions of planets and other Solar System bodies, as well as defining their orbital elements.

  7. Ecliptic - Wikipedia

    en.wikipedia.org/wiki/Ecliptic

    Because of this, most Solar System bodies appear very close to the ecliptic in the sky. The invariable plane is defined by the angular momentum of the entire Solar System, essentially the vector sum of all of the orbital and rotational angular momenta of all the bodies of the system; more than 60% of the total comes from the orbit of Jupiter. [21]

  8. Orbital elements - Wikipedia

    en.wikipedia.org/wiki/Orbital_elements

    K̂ is perpendicular to the reference plane. Orbital elements of bodies (planets, comets, asteroids, ...) in the Solar System usually the ecliptic as that plane. x̂, ŷ are in the orbital plane and with x̂ in the direction to the pericenter . ẑ is perpendicular to the plane of the orbit. ŷ is mutually perpendicular to x̂ and ẑ.

  9. List of orbits - Wikipedia

    en.wikipedia.org/wiki/List_of_orbits

    [1] [9] Although terms are often used interchangeably, technically a geosynchronous orbit matches the Earth's rotational period, but the definition does not require it to have zero orbital inclination to the equator, and thus is not stationary above a given point on the equator, but may oscillate north and south during the course of a day. Thus ...