Search results
Results from the WOW.Com Content Network
The useful buffer range for tris (pH 7–9) coincides with the physiological pH typical of most living organisms. This, and its low cost, make tris one of the most common buffers in the biology/biochemistry laboratory. Tris is also used as a primary standard to standardize acid solutions for chemical analysis.
The following is a sample recipe for TBST: 20 mM Tris; 150 mM NaCl; 0.1% Tween 20; Adjust pH with HCl to pH 7.4–7.6 The simplest way to prepare a TBS-Tween solution is to use TBS-T tablets.
Tris-buffered saline (TBS) is a buffer used in some biochemical techniques to maintain the pH within a relatively narrow range. Tris (with HCl) has a slightly alkaline buffering capacity in the 7–9.2 range. The conjugate acid of Tris has a pK a of 8.07 at 25 °C.
TAE buffer is commonly prepared as a 50× stock solution for laboratory use. A 50× stock solution can be prepared by dissolving 242 g Tris base in water, adding 57.1 ml glacial acetic acid, and 100 ml of 500 mM EDTA (pH 8.0) solution, and bringing the final volume up to 1 litre.
TE buffer is also known as T 10 E 1 buffer, which can be read as "T ten E one buffer". To make a 100 ml solution of T 10 E 1 buffer, 1 ml of 1 M Tris base (pH 10–11) and 0.2 ml EDTA (0.5 M) are mixed and made up with double distilled water up to 100ml. Add microliter amounts of high molarity HCl to lower the pH to 8.
TBE or Tris/Borate/EDTA, is a buffer solution containing a mixture of Tris base, boric acid and EDTA. In molecular biology, TBE and TAE buffers are often used in procedures involving nucleic acids , the most common being electrophoresis .
Bis-tris propane, or 1,3-bis(tris(hydroxymethyl)methylamino)propane, also known as BTP, is a chemical substance that is used in buffer solutions. It is a white to off-white crystalline powder that is soluble in water. It has a wide buffering range, from 6 to 9.5 due to its two pK a values which are close in value.
Buffer capacity falls to 33% of the maximum value at pH = pK a ± 1, to 10% at pH = pK a ± 1.5 and to 1% at pH = pK a ± 2. For this reason the most useful range is approximately p K a ± 1. When choosing a buffer for use at a specific pH, it should have a p K a value as close as possible to that pH.