enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unbiased estimation of standard deviation - Wikipedia

    en.wikipedia.org/wiki/Unbiased_estimation_of...

    Bias in standard deviation for autocorrelated data. The figure shows the ratio of the estimated standard deviation to its known value (which can be calculated analytically for this digital filter), for several settings of α as a function of sample size n. Changing α alters the variance reduction ratio of the filter, which is known to be

  3. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    Based on this sample, the estimated population mean is 10, and the unbiased estimate of population variance is 30. Both the naïve algorithm and two-pass algorithm compute these values correctly. Next consider the sample (10 8 + 4, 10 8 + 7, 10 8 + 13, 10 8 + 16), which gives rise to the same estimated variance as the first sample. The two-pass ...

  4. Histogram - Wikipedia

    en.wikipedia.org/wiki/Histogram

    The data shown is a random sample of 10,000 points from a normal distribution with a mean of 0 and a standard deviation of 1. The data used to construct a histogram are generated via a function m i that counts the number of observations that fall into each of the disjoint categories (known as bins).

  5. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    Most power and sample size calculations are heavily dependent on the standard deviation of the statistic of interest. If the estimate used is incorrect, the required sample size will also be wrong. One method to get an impression of the variation of the statistic is to use a small pilot sample and perform bootstrapping on it to get impression ...

  6. Scott's rule - Wikipedia

    en.wikipedia.org/wiki/Scott's_Rule

    where is the standard deviation of the normal distribution and is estimated from the data. With this value of bin width Scott demonstrates that [5] / showing how quickly the histogram approximation approaches the true distribution as the number of samples increases.

  7. Freedman–Diaconis rule - Wikipedia

    en.wikipedia.org/wiki/Freedman–Diaconis_rule

    For a set of empirical measurements sampled from some probability distribution, the Freedman–Diaconis rule is designed approximately minimize the integral of the squared difference between the histogram (i.e., relative frequency density) and the density of the theoretical probability distribution.

  8. Standard deviation - Wikipedia

    en.wikipedia.org/wiki/Standard_deviation

    An estimate of the standard deviation for N > 100 data taken to be approximately normal follows from the heuristic that 95% of the area under the normal curve lies roughly two standard deviations to either side of the mean, so that, with 95% probability the total range of values R represents four standard deviations so that s ≈ R/4.

  9. Standard error - Wikipedia

    en.wikipedia.org/wiki/Standard_error

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file