enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Molecular_geometry

    Molecular geometry influences several properties of a substance including its reactivity, polarity, phase of matter, color, magnetism and biological activity. [1] [2] [3] The angles between bonds that an atom forms depend only weakly on the rest of molecule, i.e. they can be understood as approximately local and hence transferable properties.

  3. VSEPR theory - Wikipedia

    en.wikipedia.org/wiki/VSEPR_theory

    Relativistic effects on the electron orbitals of superheavy elements is predicted to influence the molecular geometry of some compounds. For instance, the 6d 5/2 electrons in nihonium play an unexpectedly strong role in bonding, so NhF 3 should assume a T-shaped geometry, instead of a trigonal planar geometry like its lighter congener BF 3. [38]

  4. Trigonal bipyramidal molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_bipyramidal...

    In chemistry, a trigonal bipyramid formation is a molecular geometry with one atom at the center and 5 more atoms at the corners of a triangular bipyramid. [1] This is one geometry for which the bond angles surrounding the central atom are not identical (see also pentagonal bipyramid), because there is no geometrical arrangement with five terminal atoms in equivalent positions.

  5. Chemical polarity - Wikipedia

    en.wikipedia.org/wiki/Chemical_polarity

    The ammonia molecule, NH 3, is polar as a result of its molecular geometry. The red represents partially negatively charged regions. The red represents partially negatively charged regions. Ammonia , NH 3 , is a molecule whose three N−H bonds have only a slight polarity (toward the more electronegative nitrogen atom).

  6. Molecular configuration - Wikipedia

    en.wikipedia.org/wiki/Molecular_configuration

    The molecular configuration of a molecule is the permanent geometry that results from the spatial arrangement of its bonds. [1] The ability of the same set of atoms to form two or more molecules with different configurations is stereoisomerism. This is distinct from constitutional isomerism which arises from atoms being connected in a different ...

  7. Tetrahedral molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_molecular_geometry

    In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron. The bond angles are arccos (− ⁠ 1 / 3 ⁠ ) = 109.4712206...° ≈ 109.5° when all four substituents are the same, as in methane ( CH 4 ) [ 1 ] [ 2 ] as well as its heavier analogues .

  8. Molecular symmetry - Wikipedia

    en.wikipedia.org/wiki/Molecular_symmetry

    XeF 4, with square planar geometry, has 1 C 4 axis and 4 C 2 axes orthogonal to C 4. These five axes plus the mirror plane perpendicular to the C 4 axis define the D 4h symmetry group of the molecule. For linear molecules, either clockwise or counterclockwise rotation about the molecular axis by any angle Φ is a symmetry operation.

  9. Trigonal planar molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_planar_molecular...

    In chemistry, trigonal planar is a molecular geometry model with one atom at the center and three atoms at the corners of an equilateral triangle, called peripheral atoms, all in one plane. [1] In an ideal trigonal planar species, all three ligands are identical and all bond angles are 120°.