enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    An operation on pairs of vectors that, like the dot product, satisfies these three properties is known as a (real) inner product. A vector space equipped with such an inner product is known as a (real) inner product space. Every finite-dimensional inner product space is also a Hilbert space. [2]

  3. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space [1] [2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar , often denoted with angle brackets such as in a , b {\displaystyle \langle a,b\rangle } .

  4. Reproducing kernel Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Reproducing_kernel_Hilbert...

    The simplest example of a reproducing kernel Hilbert space is the space (,) where is a set and is the counting measure on . For x ∈ X {\displaystyle x\in X} , the reproducing kernel K x {\displaystyle K_{x}} is the indicator function of the one point set { x } ⊂ X {\displaystyle \{x\}\subset X} .

  5. Hilbert–Schmidt operator - Wikipedia

    en.wikipedia.org/wiki/Hilbert–Schmidt_operator

    The Hilbert–Schmidt operators form a two-sided *-ideal in the Banach algebra of bounded operators on H. They also form a Hilbert space, denoted by B HS (H) or B 2 (H), which can be shown to be naturally isometrically isomorphic to the tensor product of Hilbert spaces, where H ∗ is the dual space of H.

  6. Tensor product of Hilbert spaces - Wikipedia

    en.wikipedia.org/wiki/Tensor_product_of_Hilbert...

    Roughly speaking, the tensor product is the metric space completion of the ordinary tensor product. This is an example of a topological tensor product. The tensor product allows Hilbert spaces to be collected into a symmetric monoidal category. [1]

  7. Gelfand–Naimark–Segal construction - Wikipedia

    en.wikipedia.org/wiki/Gelfand–Naimark–Segal...

    The quotient space of by the vector subspace is an inner product space with the inner product defined by +, + := (),,, which is well-defined due to the Cauchy–Schwarz inequality. The Cauchy completion of A / I {\displaystyle A/I} in the norm induced by this inner product is a Hilbert space, which we denote by H {\displaystyle H} .

  8. Hilbert C*-module - Wikipedia

    en.wikipedia.org/wiki/Hilbert_C*-module

    Hilbert C*-modules are mathematical objects that generalise the notion of Hilbert spaces (which are themselves generalisations of Euclidean space), in that they endow a linear space with an "inner product" that takes values in a C*-algebra.

  9. Weak convergence (Hilbert space) - Wikipedia

    en.wikipedia.org/wiki/Weak_convergence_(Hilbert...

    The first three functions in the sequence () = ⁡ on [,].As converges weakly to =.. The Hilbert space [,] is the space of the square-integrable functions on the interval [,] equipped with the inner product defined by